I am seeking some simple (i.e. - no maths notation, long-form reproducible code) examples for the filter
function in R
I think I have my head around the convolution method, but am stuck at generalising the recursive option. I have read and battled with various documentation, but the help is just a bit opaque to me.
Here are the examples I have figured out so far:
# Set some values for filter components
f1 <- 1; f2 <- 1; f3 <- 1;
And on we go:
# basic convolution filter
filter(1:5,f1,method="convolution")
[1] 1 2 3 4 5
#equivalent to:
x[1] * f1
x[2] * f1
x[3] * f1
x[4] * f1
x[5] * f1
# convolution with 2 coefficients in filter
filter(1:5,c(f1,f2),method="convolution")
[1] 3 5 7 9 NA
#equivalent to:
x[1] * f2 + x[2] * f1
x[2] * f2 + x[3] * f1
x[3] * f2 + x[4] * f1
x[4] * f2 + x[5] * f1
x[5] * f2 + x[6] * f1
# convolution with 3 coefficients in filter
filter(1:5,c(f1,f2,f3),method="convolution")
[1] NA 6 9 12 NA
#equivalent to:
NA * f3 + x[1] * f2 + x[2] * f1 #x[0] = doesn't exist/NA
x[1] * f3 + x[2] * f2 + x[3] * f1
x[2] * f3 + x[3] * f2 + x[4] * f1
x[3] * f3 + x[4] * f2 + x[5] * f1
x[4] * f3 + x[5] * f2 + x[6] * f1
Now's when I am hurting my poor little brain stem.
I managed to figure out the most basic example using info at this post: https://stackoverflow.com/a/11552765/496803
filter(1:5, f1, method="recursive")
[1] 1 3 6 10 15
#equivalent to:
x[1]
x[2] + f1*x[1]
x[3] + f1*x[2] + f1^2*x[1]
x[4] + f1*x[3] + f1^2*x[2] + f1^3*x[1]
x[5] + f1*x[4] + f1^2*x[3] + f1^3*x[2] + f1^4*x[1]
Can someone provide similar code to what I have above for the convolution examples for the recursive version with filter = c(f1,f2)
and filter = c(f1,f2,f3)
?
Answers should match the results from the function:
filter(1:5, c(f1,f2), method="recursive")
[1] 1 3 7 14 26
filter(1:5, c(f1,f2,f3), method="recursive")
[1] 1 3 7 15 30
EDIT
To finalise using @agstudy's neat answer:
> filter(1:5, f1, method="recursive")
Time Series:
Start = 1
End = 5
Frequency = 1
[1] 1 3 6 10 15
> y1 <- x[1]
> y2 <- x[2] + f1*y1
> y3 <- x[3] + f1*y2
> y4 <- x[4] + f1*y3
> y5 <- x[5] + f1*y4
> c(y1,y2,y3,y4,y5)
[1] 1 3 6 10 15
and...
> filter(1:5, c(f1,f2), method="recursive")
Time Series:
Start = 1
End = 5
Frequency = 1
[1] 1 3 7 14 26
> y1 <- x[1]
> y2 <- x[2] + f1*y1
> y3 <- x[3] + f1*y2 + f2*y1
> y4 <- x[4] + f1*y3 + f2*y2
> y5 <- x[5] + f1*y4 + f2*y3
> c(y1,y2,y3,y4,y5)
[1] 1 3 7 14 26
and...
> filter(1:5, c(f1,f2,f3), method="recursive")
Time Series:
Start = 1
End = 5
Frequency = 1
[1] 1 3 7 15 30
> y1 <- x[1]
> y2 <- x[2] + f1*y1
> y3 <- x[3] + f1*y2 + f2*y1
> y4 <- x[4] + f1*y3 + f2*y2 + f3*y1
> y5 <- x[5] + f1*y4 + f2*y3 + f3*y2
> c(y1,y2,y3,y4,y5)
[1] 1 3 7 15 30
See Question&Answers more detail:
os