I've read the docs about slicers a million times, but have never got my head round it, so I'm still trying to figure out how to use loc
to slice a DataFrame
with a MultiIndex
.
I'll start with the DataFrame
from this SO answer:
value
first second third fourth
A0 B0 C1 D0 2
D1 3
C2 D0 6
D1 7
B1 C1 D0 10
D1 11
C2 D0 14
D1 15
A1 B0 C1 D0 18
D1 19
C2 D0 22
D1 23
B1 C1 D0 26
D1 27
C2 D0 30
D1 31
A2 B0 C1 D0 34
D1 35
C2 D0 38
D1 39
B1 C1 D0 42
D1 43
C2 D0 46
D1 47
A3 B0 C1 D0 50
D1 51
C2 D0 54
D1 55
B1 C1 D0 58
D1 59
C2 D0 62
D1 63
To select just A0
and C1
values, I can do:
In [26]: df.loc['A0', :, 'C1', :]
Out[26]:
value
first second third fourth
A0 B0 C1 D0 2
D1 3
B1 C1 D0 10
D1 11
Which also works selecting from three levels, and even with tuples:
In [28]: df.loc['A0', :, ('C1', 'C2'), 'D1']
Out[28]:
value
first second third fourth
A0 B0 C1 D1 3
C2 D1 5
B1 C1 D1 11
C2 D1 13
So far, intuitive and brilliant.
So why can't I select all values from the first index level?
In [30]: df.loc[:, :, 'C1', :]
---------------------------------------------------------------------------
IndexingError Traceback (most recent call last)
<ipython-input-30-57b56108d941> in <module>()
----> 1 df.loc[:, :, 'C1', :]
/usr/local/lib/python2.7/dist-packages/pandas/core/indexing.pyc in __getitem__(self, key)
1176 def __getitem__(self, key):
1177 if type(key) is tuple:
-> 1178 return self._getitem_tuple(key)
1179 else:
1180 return self._getitem_axis(key, axis=0)
/usr/local/lib/python2.7/dist-packages/pandas/core/indexing.pyc in _getitem_tuple(self, tup)
694
695 # no multi-index, so validate all of the indexers
--> 696 self._has_valid_tuple(tup)
697
698 # ugly hack for GH #836
/usr/local/lib/python2.7/dist-packages/pandas/core/indexing.pyc in _has_valid_tuple(self, key)
125 for i, k in enumerate(key):
126 if i >= self.obj.ndim:
--> 127 raise IndexingError('Too many indexers')
128 if not self._has_valid_type(k, i):
129 raise ValueError("Location based indexing can only have [%s] "
IndexingError: Too many indexers
Surely this is not intended behaviour?
Note: I know this is possible with df.xs('C1', level='third')
but the current .loc
behaviour seems inconsistent.
See Question&Answers more detail:
os