Here is a (slow) implementation of the inverse cdf method when you are only given a density.
den<-dnorm #replace with your own density
#calculates the cdf by numerical integration
cdf<-function(x) integrate(den,-Inf,x)[[1]]
#inverts the cdf
inverse.cdf<-function(x,cdf,starting.value=0){
lower.found<-FALSE
lower<-starting.value
while(!lower.found){
if(cdf(lower)>=(x-.000001))
lower<-lower-(lower-starting.value)^2-1
else
lower.found<-TRUE
}
upper.found<-FALSE
upper<-starting.value
while(!upper.found){
if(cdf(upper)<=(x+.000001))
upper<-upper+(upper-starting.value)^2+1
else
upper.found<-TRUE
}
uniroot(function(y) cdf(y)-x,c(lower,upper))$root
}
#generates 1000 random variables of distribution 'den'
vars<-apply(matrix(runif(1000)),1,function(x) inverse.cdf(x,cdf))
hist(vars)
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…