Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
186 views
in Technique[技术] by (71.8m points)

python - get first and last values in a groupby

I have a dataframe df

df = pd.DataFrame(np.arange(20).reshape(10, -1),
                  [['a', 'a', 'a', 'a', 'b', 'b', 'b', 'c', 'c', 'd'],
                   ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']],
                  ['X', 'Y'])

How do I get the first and last rows, grouped by the first level of the index?

I tried

df.groupby(level=0).agg(['first', 'last']).stack()

and got

          X   Y
a first   0   1
  last    6   7
b first   8   9
  last   12  13
c first  14  15
  last   16  17
d first  18  19
  last   18  19

This is so close to what I want. How can I preserve the level 1 index and get this instead:

      X   Y
a a   0   1
  d   6   7
b e   8   9
  g  12  13
c h  14  15
  i  16  17
d j  18  19
  j  18  19
See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Option 1

def first_last(df):
    return df.ix[[0, -1]]

df.groupby(level=0, group_keys=False).apply(first_last)

enter image description here


Option 2 - only works if index is unique

idx = df.index.to_series().groupby(level=0).agg(['first', 'last']).stack()
df.loc[idx]

Option 3 - per notes below, this only makes sense when there are no NAs

I also abused the agg function. The code below works, but is far uglier.

df.reset_index(1).groupby(level=0).agg(['first', 'last']).stack() 
    .set_index('level_1', append=True).reset_index(1, drop=True) 
    .rename_axis([None, None])

Note

per @unutbu: agg(['first', 'last']) take the firs non-na values.

I interpreted this as, it must then be necessary to run this column by column. Further, forcing index level=1 to align may not even make sense.

Let's include another test

df = pd.DataFrame(np.arange(20).reshape(10, -1),
                  [list('aaaabbbccd'),
                   list('abcdefghij')],
                  list('XY'))

df.loc[tuple('aa'), 'X'] = np.nan

def first_last(df):
    return df.ix[[0, -1]]

df.groupby(level=0, group_keys=False).apply(first_last)

enter image description here

df.reset_index(1).groupby(level=0).agg(['first', 'last']).stack() 
    .set_index('level_1', append=True).reset_index(1, drop=True) 
    .rename_axis([None, None])

enter image description here

Sure enough! This second solution is taking the first valid value in column X. It is now nonsensical to have forced that value to align with the index a.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...