We need to use list of indices that are to be kept in sorted order instead of feeding the kth param as a scalar. Thus, to maintain the sorted nature across the first 5
elements, instead of np.argpartition(a,5)[:5]
, simply do -
np.argpartition(a,range(5))[:5]
Here's a sample run to make things clear -
In [84]: a = np.random.rand(10)
In [85]: a
Out[85]:
array([ 0.85017222, 0.19406266, 0.7879974 , 0.40444978, 0.46057793,
0.51428578, 0.03419694, 0.47708 , 0.73924536, 0.14437159])
In [86]: a[np.argpartition(a,5)[:5]]
Out[86]: array([ 0.19406266, 0.14437159, 0.03419694, 0.40444978, 0.46057793])
In [87]: a[np.argpartition(a,range(5))[:5]]
Out[87]: array([ 0.03419694, 0.14437159, 0.19406266, 0.40444978, 0.46057793])
Please note that argpartition
makes sense on performance aspect, if we are looking to get sorted indices for a small subset of elements, let's say k
number of elems which is a small fraction of the total number of elems.
Let's use a bigger dataset and try to get sorted indices for all elems to make the above mentioned point clear -
In [51]: a = np.random.rand(10000)*100
In [52]: %timeit np.argpartition(a,range(a.size-1))[:5]
10 loops, best of 3: 105 ms per loop
In [53]: %timeit a.argsort()
1000 loops, best of 3: 893 μs per loop
Thus, to sort all elems, np.argpartition
isn't the way to go.
Now, let's say I want to get sorted indices for only the first 5 elems with that big dataset and also keep the order for those -
In [68]: a = np.random.rand(10000)*100
In [69]: np.argpartition(a,range(5))[:5]
Out[69]: array([1647, 942, 2167, 1371, 2571])
In [70]: a.argsort()[:5]
Out[70]: array([1647, 942, 2167, 1371, 2571])
In [71]: %timeit np.argpartition(a,range(5))[:5]
10000 loops, best of 3: 112 μs per loop
In [72]: %timeit a.argsort()[:5]
1000 loops, best of 3: 888 μs per loop
Very useful here!