Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
827 views
in Technique[技术] by (71.8m points)

numpy - Python 4D linear interpolation on a rectangular grid

I need to interpolate temperature data linearly in 4 dimensions (latitude, longitude, altitude and time).
The number of points is fairly high (360x720x50x8) and I need a fast method of computing the temperature at any point in space and time within the data bounds.

I have tried using scipy.interpolate.LinearNDInterpolator but using Qhull for triangulation is inefficient on a rectangular grid and takes hours to complete.

By reading this SciPy ticket, the solution seemed to be implementing a new nd interpolator using the standard interp1d to calculate a higher number of data points, and then use a "nearest neighbor" approach with the new dataset.

This, however, takes a long time again (minutes).

Is there a quick way of interpolating data on a rectangular grid in 4 dimensions without it taking minutes to accomplish?

I thought of using interp1d 4 times without calculating a higher density of points, but leaving it for the user to call with the coordinates, but I can't get my head around how to do this.

Otherwise would writing my own 4D interpolator specific to my needs be an option here?

Here's the code I've been using to test this:

Using scipy.interpolate.LinearNDInterpolator:

import numpy as np
from scipy.interpolate import LinearNDInterpolator

lats = np.arange(-90,90.5,0.5)
lons = np.arange(-180,180,0.5)
alts = np.arange(1,1000,21.717)
time = np.arange(8)
data = np.random.rand(len(lats)*len(lons)*len(alts)*len(time)).reshape((len(lats),len(lons),len(alts),len(time)))

coords = np.zeros((len(lats),len(lons),len(alts),len(time),4))
coords[...,0] = lats.reshape((len(lats),1,1,1))
coords[...,1] = lons.reshape((1,len(lons),1,1))
coords[...,2] = alts.reshape((1,1,len(alts),1))
coords[...,3] = time.reshape((1,1,1,len(time)))
coords = coords.reshape((data.size,4))

interpolatedData = LinearNDInterpolator(coords,data)

Using scipy.interpolate.interp1d:

import numpy as np
from scipy.interpolate import LinearNDInterpolator

lats = np.arange(-90,90.5,0.5)
lons = np.arange(-180,180,0.5)
alts = np.arange(1,1000,21.717)
time = np.arange(8)
data = np.random.rand(len(lats)*len(lons)*len(alts)*len(time)).reshape((len(lats),len(lons),len(alts),len(time)))

interpolatedData = np.array([None, None, None, None])
interpolatedData[0] = interp1d(lats,data,axis=0)
interpolatedData[1] = interp1d(lons,data,axis=1)
interpolatedData[2] = interp1d(alts,data,axis=2)
interpolatedData[3] = interp1d(time,data,axis=3)

Thank you very much for your help!

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

In the same ticket you have linked, there is an example implementation of what they call tensor product interpolation, showing the proper way to nest recursive calls to interp1d. This is equivalent to quadrilinear interpolation if you choose the default kind='linear' parameter for your interp1d's.

While this may be good enough, this is not linear interpolation, and there will be higher order terms in the interpolation function, as this image from the wikipedia entry on bilinear interpolation shows:

enter image description here

This may very well be good enough for what you are after, but there are applications where a triangulated, really piecewise linear, interpoaltion is preferred. If you really need this, there is an easy way of working around the slowness of qhull.

Once LinearNDInterpolator has been setup, there are two steps to coming up with an interpolated value for a given point:

  1. figure out inside which triangle (4D hypertetrahedron in your case) the point is, and
  2. interpolate using the barycentric coordinates of the point relative to the vertices as weights.

You probably do not want to mess with barycentric coordinates, so better leave that to LinearNDInterpolator. But you do know some things about the triangulation. Mostly that, because you have a regular grid, within each hypercube the triangulation is going to be the same. So to interpolate a single value, you could first determine in which subcube your point is, build a LinearNDInterpolator with the 16 vertices of that cube, and use it to interpolate your value:

from itertools import product

def interpolator(coords, data, point) :
    dims = len(point)
    indices = []
    sub_coords = []
    for j in xrange(dims) :
        idx = np.digitize([point[j]], coords[j])[0]
        indices += [[idx - 1, idx]]
        sub_coords += [coords[j][indices[-1]]]
    indices = np.array([j for j in product(*indices)])
    sub_coords = np.array([j for j in product(*sub_coords)])
    sub_data = data[list(np.swapaxes(indices, 0, 1))]
    li = LinearNDInterpolator(sub_coords, sub_data)
    return li([point])[0]

>>> point = np.array([12.3,-4.2, 500.5, 2.5])
>>> interpolator((lats, lons, alts, time), data, point)
0.386082399091

This cannot work on vectorized data, since that would require storing a LinearNDInterpolator for every possible subcube, and even though it probably would be faster than triangulating the whole thing, it would still be very slow.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...