I would like to melt several groups of columns of a dataframe into multiple target columns. Similar to questions Python Pandas Melt Groups of Initial Columns Into Multiple Target Columns and pandas dataframe reshaping/stacking of multiple value variables into seperate columns. However I need to do this explicitly by column name, rather than by index location.
import pandas as pd
df = pd.DataFrame([('a','b','c',1,2,3,'aa','bb','cc'), ('d', 'e', 'f', 4, 5, 6, 'dd', 'ee', 'ff')],
columns=['a_1', 'a_2', 'a_3','b_1', 'b_2', 'b_3','c_1', 'c_2', 'c_3'])
df
Original Dataframe:
id a_1 a_2 a_3 b_1 b_2 b_3 c_1 c_2 c_3
0 101 a b c 1 2 3 aa bb cc
1 102 d e f 4 5 6 dd ee ff
Target Dataframe
id a b c
0 101 a 1 aa
1 101 b 2 bb
2 101 c 3 cc
3 102 d 4 dd
4 102 e 5 ee
5 102 f 6 ff
Advice is much appreciated on an approach to this.
See Question&Answers more detail:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…