Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
467 views
in Technique[技术] by (71.8m points)

scikit learn - How should I teach machine learning algorithm using data with big disproportion of classes? (SVM)

I am trying to teach my SVM algorithm using data of clicks and conversion by people who see the banners. The main problem is that the clicks is around 0.2% of all data so it's big disproportion in it. When I use simple SVM in testing phase it always predict only "view" class and never "click" or "conversion". In average it gives 99.8% right answers (because of disproportion), but it gives 0% right prediction if you check "click" or "conversion" ones. How can you tune the SVM algorithm (or select another one) to take into consideration the disproportion?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

The most basic approach here is to use so called "class weighting scheme" - in classical SVM formulation there is a C parameter used to control the missclassification count. It can be changed into C1 and C2 parameters used for class 1 and 2 respectively. The most common choice of C1 and C2 for a given C is to put

C1 = C / n1
C2 = C / n2

where n1 and n2 are sizes of class 1 and 2 respectively. So you "punish" SVM for missclassifing the less frequent class much harder then for missclassification the most common one.

Many existing libraries (like libSVM) supports this mechanism with class_weight parameters.

Example using python and sklearn

print __doc__

import numpy as np
import pylab as pl
from sklearn import svm

# we create 40 separable points
rng = np.random.RandomState(0)
n_samples_1 = 1000
n_samples_2 = 100
X = np.r_[1.5 * rng.randn(n_samples_1, 2),
          0.5 * rng.randn(n_samples_2, 2) + [2, 2]]
y = [0] * (n_samples_1) + [1] * (n_samples_2)

# fit the model and get the separating hyperplane
clf = svm.SVC(kernel='linear', C=1.0)
clf.fit(X, y)

w = clf.coef_[0]
a = -w[0] / w[1]
xx = np.linspace(-5, 5)
yy = a * xx - clf.intercept_[0] / w[1]


# get the separating hyperplane using weighted classes
wclf = svm.SVC(kernel='linear', class_weight={1: 10})
wclf.fit(X, y)

ww = wclf.coef_[0]
wa = -ww[0] / ww[1]
wyy = wa * xx - wclf.intercept_[0] / ww[1]

# plot separating hyperplanes and samples
h0 = pl.plot(xx, yy, 'k-', label='no weights')
h1 = pl.plot(xx, wyy, 'k--', label='with weights')
pl.scatter(X[:, 0], X[:, 1], c=y, cmap=pl.cm.Paired)
pl.legend()

pl.axis('tight')
pl.show()

In particular, in sklearn you can simply turn on the automatic weighting by setting class_weight='auto'.

Visualization of above code from sklearn documentation


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...