Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
199 views
in Technique[技术] by (71.8m points)

python - Create a Pandas DataFrame from deeply nested JSON

I'm trying to create a single Pandas DataFrame object from a deeply nested JSON string.

The JSON schema is:

{"intervals": [
{
pivots: "Jane Smith",
"series": [
    {
        "interval_id": 0,
        "p_value": 1
       },
     {
         "interval_id": 1,
         "p_value": 1.1162791357932633e-8
     },
   {
        "interval_id": 2,
        "p_value": 0.0000028675012051504467
     }
    ],
   },
  {

"pivots": "Bob Smith",
  "series": [
       {
            "interval_id": 0,
            "p_value": 1
           },
         {
             "interval_id": 1,
            "p_value": 1.1162791357932633e-8
         },
       {
            "interval_id": 2,
            "p_value": 0.0000028675012051504467
         }
       ]
     }
    ]
 }

Desired Outcome I need to flatten this to produce a table:

Actor Interval_id Interval_id Interval_id ... 
Jane Smith      1         1.1162        0.00000 ... 
Bob Smith       1         1.1162        0.00000 ... 

The first column is the Pivots values, and the remaining columns are the values of the keys interval_id and p_value stored in the list series.

So far i've got

import requests as r
import pandas as pd
actor_data = r.get("url/to/data").json['data']['intervals']
df = pd.DataFrame(actor_data)

actor_data is a list where the length is equal to the number of individuals ie pivots.values(). The df object simply returns

<bound method DataFrame.describe of  pivots             Series
0           Jane Smith  [{u'p_value': 1.0, u'interval_id': 0}, {u'p_va...
1           Bob Smith  [{u'p_value': 1.0, u'interval_id': 0}, {u'p_va...
.
.
.

How can I iterate through that series list to get to the dict values and create N distinct columns? Should I try to create a DataFrame for the series list, reshape it,and then do a column bind with the actor names?

UPDATE:

pvalue_list = [i['p_value'] for i in json_data['series']]

this gives me a list of lists. Now I need to figure out how to add each list as a row in a DataFrame.

value_list = []
for i in pvalue_list:
    pvs = [j['p_value'] for j in i]
    value_list = value_list.append(pvs)
return value_list

This returns a NoneType

Solution

def get_hypthesis_data():
    raw_data = r.get("/url/to/data").json()['data']
    actor_dict = {}
    for actor_series in raw_data['intervals']:
        actor = actor_series['pivots']
        p_values = []
        for interval in actor_series['series']:
            p_values.append(interval['p_value'])
        actor_dict[actor] = p_values
    return pd.DataFrame(actor_dict).T

This returns the correct DataFrame. I transposed it so the individuals were rows and not columns.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

I think organizing your data in way that yields repeating column names is only going to create headaches for you later on down the road. A better approach IMHO is to create a column for each of pivots, interval_id, and p_value. This will make extremely easy to query your data after loading it into pandas.

Also, your JSON has some errors in it. I ran it through this to find the errors.

jq helps here

import sh
jq = sh.jq.bake('-M')  # disable colorizing
json_data = "from above"
rule = """[{pivots: .intervals[].pivots, 
            interval_id: .intervals[].series[].interval_id,
            p_value: .intervals[].series[].p_value}]"""
out = jq(rule, _in=json_data).stdout
res = pd.DataFrame(json.loads(out))

This will yield output similar to

    interval_id       p_value      pivots
32            2  2.867501e-06  Jane Smith
33            2  1.000000e+00  Jane Smith
34            2  1.116279e-08  Jane Smith
35            2  2.867501e-06  Jane Smith
36            0  1.000000e+00   Bob Smith
37            0  1.116279e-08   Bob Smith
38            0  2.867501e-06   Bob Smith
39            0  1.000000e+00   Bob Smith
40            0  1.116279e-08   Bob Smith
41            0  2.867501e-06   Bob Smith
42            1  1.000000e+00   Bob Smith
43            1  1.116279e-08   Bob Smith

Adapted from this comment

Of course, you can always call res.drop_duplicates() to remove the duplicate rows. This gives

In [175]: res.drop_duplicates()
Out[175]:
    interval_id       p_value      pivots
0             0  1.000000e+00  Jane Smith
1             0  1.116279e-08  Jane Smith
2             0  2.867501e-06  Jane Smith
6             1  1.000000e+00  Jane Smith
7             1  1.116279e-08  Jane Smith
8             1  2.867501e-06  Jane Smith
12            2  1.000000e+00  Jane Smith
13            2  1.116279e-08  Jane Smith
14            2  2.867501e-06  Jane Smith
36            0  1.000000e+00   Bob Smith
37            0  1.116279e-08   Bob Smith
38            0  2.867501e-06   Bob Smith
42            1  1.000000e+00   Bob Smith
43            1  1.116279e-08   Bob Smith
44            1  2.867501e-06   Bob Smith
48            2  1.000000e+00   Bob Smith
49            2  1.116279e-08   Bob Smith
50            2  2.867501e-06   Bob Smith

[18 rows x 3 columns]

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...