I'm trying to create a single Pandas DataFrame object from a deeply nested JSON string.
The JSON schema is:
{"intervals": [
{
pivots: "Jane Smith",
"series": [
{
"interval_id": 0,
"p_value": 1
},
{
"interval_id": 1,
"p_value": 1.1162791357932633e-8
},
{
"interval_id": 2,
"p_value": 0.0000028675012051504467
}
],
},
{
"pivots": "Bob Smith",
"series": [
{
"interval_id": 0,
"p_value": 1
},
{
"interval_id": 1,
"p_value": 1.1162791357932633e-8
},
{
"interval_id": 2,
"p_value": 0.0000028675012051504467
}
]
}
]
}
Desired Outcome I need to flatten this to produce a table:
Actor Interval_id Interval_id Interval_id ...
Jane Smith 1 1.1162 0.00000 ...
Bob Smith 1 1.1162 0.00000 ...
The first column is the Pivots
values, and the remaining columns are the values of the keys interval_id
and p_value
stored in the list series
.
So far i've got
import requests as r
import pandas as pd
actor_data = r.get("url/to/data").json['data']['intervals']
df = pd.DataFrame(actor_data)
actor_data
is a list where the length is equal to the number of individuals ie pivots.values()
. The df object simply returns
<bound method DataFrame.describe of pivots Series
0 Jane Smith [{u'p_value': 1.0, u'interval_id': 0}, {u'p_va...
1 Bob Smith [{u'p_value': 1.0, u'interval_id': 0}, {u'p_va...
.
.
.
How can I iterate through that series
list to get to the dict values and create N distinct columns? Should I try to create a DataFrame for the series
list, reshape it,and then do a column bind with the actor names?
UPDATE:
pvalue_list = [i['p_value'] for i in json_data['series']]
this gives me a list of lists. Now I need to figure out how to add each list as a row in a DataFrame.
value_list = []
for i in pvalue_list:
pvs = [j['p_value'] for j in i]
value_list = value_list.append(pvs)
return value_list
This returns a NoneType
Solution
def get_hypthesis_data():
raw_data = r.get("/url/to/data").json()['data']
actor_dict = {}
for actor_series in raw_data['intervals']:
actor = actor_series['pivots']
p_values = []
for interval in actor_series['series']:
p_values.append(interval['p_value'])
actor_dict[actor] = p_values
return pd.DataFrame(actor_dict).T
This returns the correct DataFrame. I transposed it so the individuals were rows and not columns.
See Question&Answers more detail:
os