To remove a minimal number of intervals from the list such that the intervals that are left do not overlap, O(n*log n)
algorithm exists:
def maximize_nonoverlapping_count(intervals):
# sort by the end-point
L = sorted(intervals, key=lambda (start, end): (end, (end - start)),
reverse=True) # O(n*logn)
iv = build_interval_tree(intervals) # O(n*log n)
result = []
while L: # until there are intervals left to consider
# pop the interval with the smallest end-point, keep it in the result
result.append(L.pop()) # O(1)
# remove intervals that overlap with the popped interval
overlapping_intervals = iv.pop(result[-1]) # O(log n + m)
remove(overlapping_intervals, from_=L)
return result
It should produce the following results:
f = maximize_nonoverlapping_count
assert f([[0, 133], [78, 100], [25, 30]]) == [[25, 30], [78, 100]]
assert f([[0,100],[9,10],[12,90]]) == [[9,10], [12, 90]]
assert f([[0, 100], [4, 20], [30, 35], [30, 78]]) == [[4, 20], [30, 35]]
assert f([[30, 70], [25, 40]]) == [[25, 40]]
It requires the data structure that can find in O(log n + m)
time all intervals that overlap with the given interval e.g., IntervalTree
. There are implementations that can be used from Python e.g., quicksect.py
, see Fast interval intersection methodologies for the example usage.
Here's a quicksect
-based O(n**2)
implementation of the above algorithm:
from quicksect import IntervalNode
class Interval(object):
def __init__(self, start, end):
self.start = start
self.end = end
self.removed = False
def maximize_nonoverlapping_count(intervals):
intervals = [Interval(start, end) for start, end in intervals]
# sort by the end-point
intervals.sort(key=lambda x: (x.end, (x.end - x.start))) # O(n*log n)
tree = build_interval_tree(intervals) # O(n*log n)
result = []
for smallest in intervals: # O(n) (without the loop body)
# pop the interval with the smallest end-point, keep it in the result
if smallest.removed:
continue # skip removed nodes
smallest.removed = True
result.append([smallest.start, smallest.end]) # O(1)
# remove (mark) intervals that overlap with the popped interval
tree.intersect(smallest.start, smallest.end, # O(log n + m)
lambda x: setattr(x.other, 'removed', True))
return result
def build_interval_tree(intervals):
root = IntervalNode(intervals[0].start, intervals[0].end,
other=intervals[0])
return reduce(lambda tree, x: tree.insert(x.start, x.end, other=x),
intervals[1:], root)
Note: the time complexity in the worst case is O(n**2)
for this implementation because the intervals are only marked as removed e.g., imagine such input intervals
that len(result) == len(intervals) / 3
and there were len(intervals) / 2
intervals that span the whole range then tree.intersect()
would be called n/3
times and each call would execute x.other.removed = True
at least n/2
times i.e., n*n/6
operations in total:
n = 6
intervals = [[0, 100], [0, 100], [0, 100], [0, 10], [10, 20], [15, 40]])
result = [[0, 10], [10, 20]]
Here's a banyan
-based O(n log n)
implementation:
from banyan import SortedSet, OverlappingIntervalsUpdator # pip install banyan
def maximize_nonoverlapping_count(intervals):
# sort by the end-point O(n log n)
sorted_intervals = SortedSet(intervals,
key=lambda (start, end): (end, (end - start)))
# build "interval" tree O(n log n)
tree = SortedSet(intervals, updator=OverlappingIntervalsUpdator)
result = []
while sorted_intervals: # until there are intervals left to consider
# pop the interval with the smallest end-point, keep it in the result
result.append(sorted_intervals.pop()) # O(log n)
# remove intervals that overlap with the popped interval
overlapping_intervals = tree.overlap(result[-1]) # O(m log n)
tree -= overlapping_intervals # O(m log n)
sorted_intervals -= overlapping_intervals # O(m log n)
return result
Note: this implementation considers [0, 10]
and [10, 20]
intervals to be overlapping:
f = maximize_nonoverlapping_count
assert f([[0, 100], [0, 10], [11, 20], [15, 40]]) == [[0, 10] ,[11, 20]]
assert f([[0, 100], [0, 10], [10, 20], [15, 40]]) == [[0, 10] ,[15, 40]]
sorted_intervals
and tree
can be merged:
from banyan import SortedSet, OverlappingIntervalsUpdator # pip install banyan
def maximize_nonoverlapping_count(intervals):
# build "interval" tree sorted by the end-point O(n log n)
tree = SortedSet(intervals, key=lambda (start, end): (end, (end - start)),
updator=OverlappingIntervalsUpdator)
result = []
while tree: # until there are intervals left to consider
# pop the interval with the smallest end-point, keep it in the result
result.append(tree.pop()) # O(log n)
# remove intervals that overlap with the popped interval
overlapping_intervals = tree.overlap(result[-1]) # O(m log n)
tree -= overlapping_intervals # O(m log n)
return result