You can use the rolling window technique as explained here, here and here, but for 2D array.
The source code for 2D rolling window in NumPy:
# Rolling window for 2D arrays in NumPy
import numpy as np
def rolling_window(a, shape): # rolling window for 2D array
s = (a.shape[0] - shape[0] + 1,) + (a.shape[1] - shape[1] + 1,) + shape
strides = a.strides + a.strides
return np.lib.stride_tricks.as_strided(a, shape=s, strides=strides)
a = np.array([[0, 1, 2, 3, 4, 5],
[6, 7, 8, 9, 10, 11],
[12, 13, 14, 15, 7, 8],
[18, 19, 20, 21, 13, 14],
[24, 25, 26, 27, 19, 20],
[30, 31, 32, 33, 34, 35]], dtype=np.int)
b = np.arange(36, dtype=np.float).reshape(6,6)
present = np.array([[7,8],[13,14],[19,20]], dtype=np.int)
absent = np.array([[7,8],[42,14],[19,20]], dtype=np.int)
found = np.all(np.all(rolling_window(a, present.shape) == present, axis=2), axis=2)
print(np.transpose(found.nonzero()))
found = np.all(np.all(rolling_window(b, present.shape) == present, axis=2), axis=2)
print(np.transpose(found.nonzero()))
found = np.all(np.all(rolling_window(a, absent.shape) == absent, axis=2), axis=2)
print(np.transpose(found.nonzero()))
Array present
is occurred in array a
two times on [1,1] and [2,4].
More examples in my CoLab notebook "Rolling window on NumPy arrays without for
loops".