Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
190 views
in Technique[技术] by (71.8m points)

python - Strange behaviour of the loss function in keras model, with pretrained convolutional base

I'm trying to create a model in Keras to make numerical predictions from the pictures. My model has densenet121 convolutional base, with couple of additional layers on top. All layers except for the two last ones are set to layer.trainable = False. My loss is mean squared error, since it's a regression task. During training I get loss: ~3, while evaluation on the very same batch of the data gives loss: ~30:

model.fit(x=dat[0],y=dat[1],batch_size=32)

Epoch 1/1 32/32 [==============================] - 0s 11ms/step - loss: 2.5571

model.evaluate(x=dat[0],y=dat[1])

32/32 [==============================] - 2s 59ms/step 29.276123046875

I feed exactly the same 32 pictures during training and evaluation. And I also calculated loss using predicted values from y_pred=model.predict(dat[0]) and then constructed mean squared error using numpy. The result was the same as what I've got from evaluation (i.e. 29.276123...).

There was suggestion that this behavior might be due to BatchNormalization layers in convolutional base (discussion on github). Of course, all BatchNormalization layers in my model have been set to layer.trainable=False as well. Maybe somebody has encountered this problem and figured out the solution?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Looks like I found the solution. As I have suggested the problem is with BatchNormalization layers. They make tree things

  1. subtract mean and normalize by std
  2. collect statistics on mean and std using running average
  3. train two additional parameters (two per node).

When one sets trainable to False, these two parameters freeze and layer also stops collecting statistic on mean and std. But it looks like the layer still performs normalization during training time using the training batch. Most likely it's a bug in keras or maybe they did it on purpose for some reason. As a result the calculations on forward propagation during training time are different as compared with prediction time even though the trainable atribute is set to False.

There are two possible solutions i can think of:

  1. To set all BatchNormalization layers to trainable. In this case these layers will collect statistics from your dataset instead of using pretrained one (which can be significantly different!). In this case you will adjust all the BatchNorm layers to your custom dataset during the training.
  2. Split the model in two parts model=model_base+model_top. After that, use model_base to extract features by model_base.predict() and then feed these features into model_top and train only the model_top.

I've just tried the first solution and it looks like it's working:

model.fit(x=dat[0],y=dat[1],batch_size=32)

Epoch 1/1
32/32 [==============================] - 1s 28ms/step - loss: **3.1053**

model.evaluate(x=dat[0],y=dat[1])

32/32 [==============================] - 0s 10ms/step
**2.487905502319336**

This was after some training - one need to wait till enough statistics on mean and std are collected.

Second solution i haven't tried yet, but i'm pretty sure it's gonna work since forward propagation during training and prediction will be the same.

Update. I found a great blog post where this issue has been discussed in all the details. Check it out here


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...