Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
305 views
in Technique[技术] by (71.8m points)

python - Creating a numpy array of 3D coordinates from three 1D arrays

Suppose I have three arbitrary 1D arrays, for example:

x_p = np.array((1.0, 2.0, 3.0, 4.0, 5.0))
y_p = np.array((2.0, 3.0, 4.0))
z_p = np.array((8.0, 9.0))

These three arrays represent sampling intervals in a 3D grid, and I want to construct a 1D array of three-dimensional vectors for all intersections, something like

points = np.array([[1.0, 2.0, 8.0],
                   [1.0, 2.0, 9.0],
                   [1.0, 3.0, 8.0],
                   ...
                   [5.0, 4.0, 9.0]])

Order doesn't actually matter for this. The obvious way to generate them:

npoints = len(x_p) * len(y_p) * len(z_p)
points = np.zeros((npoints, 3))
i = 0
for x in x_p:
    for y in y_p:
        for z in z_p:
            points[i, :] = (x, y, z)
            i += 1

So the question is... is there a faster way? I have looked but not found (possibly just failed to find the right Google keywords).

I am currently using this:

npoints = len(x_p) * len(y_p) * len(z_p)
points = np.zeros((npoints, 3))
i = 0
nz = len(z_p)
for x in x_p:
    for y in y_p:
        points[i:i+nz, 0] = x
        points[i:i+nz, 1] = y
        points[i:i+nz, 2] = z_p
        i += nz

but I feel like I am missing some clever fancy Numpy way?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

To use numpy mesh grid on the above example the following will work:

np.vstack(np.meshgrid(x_p,y_p,z_p)).reshape(3,-1).T

Numpy meshgrid for grids of more then two dimensions require numpy 1.7. To circumvent this and pulling the relevant data from the source code.

def ndmesh(*xi,**kwargs):
    if len(xi) < 2:
        msg = 'meshgrid() takes 2 or more arguments (%d given)' % int(len(xi) > 0)
        raise ValueError(msg)

    args = np.atleast_1d(*xi)
    ndim = len(args)
    copy_ = kwargs.get('copy', True)

    s0 = (1,) * ndim
    output = [x.reshape(s0[:i] + (-1,) + s0[i + 1::]) for i, x in enumerate(args)]

    shape = [x.size for x in output]

    # Return the full N-D matrix (not only the 1-D vector)
    if copy_:
        mult_fact = np.ones(shape, dtype=int)
        return [x * mult_fact for x in output]
    else:
        return np.broadcast_arrays(*output)

Checking the result:

print np.vstack((ndmesh(x_p,y_p,z_p))).reshape(3,-1).T

[[ 1.  2.  8.]
 [ 1.  2.  9.]
 [ 1.  3.  8.]
 ....
 [ 5.  3.  9.]
 [ 5.  4.  8.]
 [ 5.  4.  9.]]

For the above example:

%timeit sol2()
10000 loops, best of 3: 56.1 us per loop

%timeit np.vstack((ndmesh(x_p,y_p,z_p))).reshape(3,-1).T
10000 loops, best of 3: 55.1 us per loop

For when each dimension is 100:

%timeit sol2()
1 loops, best of 3: 655 ms per loop
In [10]:

%timeit points = np.vstack((ndmesh(x_p,y_p,z_p))).reshape(3,-1).T
10 loops, best of 3: 21.8 ms per loop

Depending on what you want to do with the data, you can return a view:

%timeit np.vstack((ndmesh(x_p,y_p,z_p,copy=False))).reshape(3,-1).T
100 loops, best of 3: 8.16 ms per loop

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...