Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
222 views
in Technique[技术] by (71.8m points)

python - computing an EWMA of a DataFrame by time

I have this dataframe:

    avg                date    high  low      qty
0 16.92 2013-05-27 00:00:00   19.00 1.22 71151.00
1 14.84 2013-05-30 00:00:00   19.00 1.22 42939.00
2  9.19 2013-06-02 00:00:00   17.20 1.23  5607.00
3 23.63 2013-06-05 00:00:00 5000.00 1.22  5850.00
4 13.82 2013-06-10 00:00:00   19.36 1.22  5644.00
5 17.76 2013-06-15 00:00:00   24.00 2.02 16969.00

Each row is an observation of avg, high, low, and qty that was created on the specified date.

I'm trying to compute an exponential moving weighted average with a span of 60 days:

df["emwa"] = pandas.ewma(df["avg"],span=60,freq="D")

But I get

TypeError: Only valid with DatetimeIndex or PeriodIndex

Okay, so maybe I need to add a DateTimeIndex to my DataFrame when it's constructed. Let me change my constructor call from

df = pandas.DataFrame(records) #records is just a list of dictionaries

to

rng = pandas.date_range(firstDate,lastDate, freq='D')
df = pandas.DataFrame(records,index=rng)

But now I get

ValueError: Shape of passed values is (5,), indices imply (5, 1641601)

Any suggestions for how to compute my EMWA?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

You need two things, ensure the date column is of dates (rather of strings) and to set the index to these dates.
You can do this in one go using to_datetime:

In [11]: df.index = pd.to_datetime(df.pop('date'))

In [12]: df
Out[12]:
              avg     high   low    qty
date
2013-05-27  16.92    19.00  1.22  71151
2013-05-30  14.84    19.00  1.22  42939
2013-06-02   9.19    17.20  1.23   5607
2013-06-05  23.63  5000.00  1.22   5850
2013-06-10  13.82    19.36  1.22   5644
2013-06-15  17.76    24.00  2.02  16969

Then you can call emwa as expected:

In [13]: pd.ewma(df["avg"], span=60, freq="D")
Out[13]:
date
2013-05-27    16.920000
2013-05-28    16.920000
2013-05-29    16.920000
2013-05-30    15.862667
2013-05-31    15.862667
2013-06-01    15.862667
2013-06-02    13.563899
2013-06-03    13.563899
2013-06-04    13.563899
2013-06-05    16.207625
2013-06-06    16.207625
2013-06-07    16.207625
2013-06-08    16.207625
2013-06-09    16.207625
2013-06-10    15.697743
2013-06-11    15.697743
2013-06-12    15.697743
2013-06-13    15.697743
2013-06-14    15.697743
2013-06-15    16.070721
Freq: D, dtype: float64

and if you set this as a column:

In [14]: df['ewma'] = pd.ewma(df["avg"], span=60, freq="D")

In [15]: df
Out[15]:
              avg     high   low    qty       ewma
date
2013-05-27  16.92    19.00  1.22  71151  16.920000
2013-05-30  14.84    19.00  1.22  42939  15.862667
2013-06-02   9.19    17.20  1.23   5607  13.563899
2013-06-05  23.63  5000.00  1.22   5850  16.207625
2013-06-10  13.82    19.36  1.22   5644  15.697743
2013-06-15  17.76    24.00  2.02  16969  16.070721

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...