Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
379 views
in Technique[技术] by (71.8m points)

python - How to replace None only with empty string using pandas?

the code below generates a df:

import pandas as pd
from datetime import datetime as dt
import numpy as np

dates = [dt(2014, 1, 2, 2), dt(2014, 1, 2, 3), dt(2014, 1, 2, 4), None]
strings1 = ['A', 'B',None, 'C']
strings2 = [None, 'B','C', 'C']
strings3 = ['A', 'B','C', None]
vals = [1.,2.,np.nan, 4.]
df = pd.DataFrame(dict(zip(['A','B','C','D','E'],
                           [strings1, dates, strings2, strings3, vals])))



+---+------+---------------------+------+------+-----+
|   |  A   |          B          |  C   |  D   |  E  |
+---+------+---------------------+------+------+-----+
| 0 | A    | 2014-01-02 02:00:00 | None | A    | 1   |
| 1 | B    | 2014-01-02 03:00:00 | B    | B    | 2   |
| 2 | None | 2014-01-02 04:00:00 | C    | C    | NaN |
| 3 | C    | NaT                 | C    | None | 4   |
+---+------+---------------------+------+------+-----+

I would like to replace all None (real None in python, not str) inside with ''(empty string).

The expected df is

+---+---+---------------------+---+---+-----+
|   | A |          B          | C | D |  E  |
+---+---+---------------------+---+---+-----+
| 0 | A | 2014-01-02 02:00:00 |   | A | 1   |
| 1 | B | 2014-01-02 03:00:00 | B | B | 2   |
| 2 |   | 2014-01-02 04:00:00 | C | C | NaN |
| 3 | C | NaT                 | C |   | 4   |
+---+---+---------------------+---+---+-----+

what I did is

df = df.replace([None], [''], regex=True)

But I got

+---+---+---------------------+---+------+---+
|   | A |          B          | C |  D   | E |
+---+---+---------------------+---+------+---+
| 0 | A | 1388628000000000000 |   | A    | 1 |
| 1 | B | 1388631600000000000 | B | B    | 2 |
| 2 |   | 1388635200000000000 | C | C    |   |
| 3 | C |                     | C |      | 4 |
+---+---+---------------------+---+------+---+

  1. all the dates becomes big numbers
  2. Even NaT and NaN are replaced, which I don't want.

How can I achieve that correctly and efficently?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

This is sufficient

df.fillna("",inplace=True)
df
Out[142]: 
   A                    B  C  D  E
0  A  2014-01-02 02:00:00     A  1
1  B  2014-01-02 03:00:00  B  B  2
2     2014-01-02 04:00:00  C  C   
3  C                       C     4

edit 2021-07-26 complete response following @dWitty's comment

If you really want to keep Nat and NaN values on other than text, you just need fill Na for your text column In your exemple this is A, C, D

You just send a dict of replacement value for your columns. value can be differents for each column. For your case you just need construct the dict

# default values to replace NA (None)
# values = {"A": "", "C": "", "D": ""}
values = (dict([[e,""] for e in ['A','C','D']]))
df.fillna(value=values, inplace=True)
df
Out[142]: 
   A                   B  C  D    E
0  A 2014-01-02 02:00:00     A  1.0
1  B 2014-01-02 03:00:00  B  B  2.0
2    2014-01-02 04:00:00  C  C  NaN
3  C                 NaT  C     4.0

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...