I have a script that takes multiple .csv files and outputs multiple bar plots. The data are daily rainfall totals and so the x-axis is the date in daytime format %d %m %Y
. As is, the code tries to include all 365 days in the label but the x-axis gets clogged. What code can I use to only include one label per month in the format "Jan 01", for example.
import pandas as pd
import time
import os
import matplotlib.pyplot as plt
files = ['w.pod.csv',
't.pod.csv',
'r.pod.csv',
'n.pod.csv',
'm.pod.csv',
'k.pod.csv',
'j.pod.csv',
'h.pod.csv',
'g.pod.csv',
'c.pod.csv',
'b.pod.csv']
for f in files:
fn = f.split('.')[0]
dat = pd.read_csv(f)
df0 = dat.loc[:, ['TimeStamp', 'RF']]
# Change time format
df0["time"] = pd.to_datetime(df0["TimeStamp"])
df0["day"] = df0['time'].map(lambda x: x.day)
df0["month"] = df0['time'].map(lambda x: x.month)
df0["year"] = df0['time'].map(lambda x: x.year)
df0.to_csv('{}_1.csv'.format(fn), na_rep="0") # write to csv
# Combine for daily rainfall
df1 = pd.read_csv('{}_1.csv'.format(fn), encoding='latin-1',
usecols=['day', 'month', 'year', 'RF', 'TimeStamp'])
df2 = df1.groupby(['day', 'month', 'year'], as_index=False).sum()
df2.to_csv('{}_2.csv'.format(fn), na_rep="0", header=None) # write to csv
# parse date
df3 = pd.read_csv('{}_2.csv'.format(fn), header=None, index_col='datetime',
parse_dates={'datetime': [1,2,3]},
date_parser=lambda x: pd.datetime.strptime(x, '%d %m %Y'))
def dt_parse(date_string):
dt = pd.datetime.strptime(date_string, '%d %m %Y')
return dt
# sort datetime
df4 = df3.sort()
final = df4.reset_index()
# rename columns
final.columns = ['date', 'bleh', 'rf']
[![enter image description here][1]][1] final[['date','rf']].plot(kind='bar')
plt.suptitle('{} Rainfall 2015-2016'.format(fn), fontsize=20)
plt.xlabel('Date', fontsize=18)
plt.ylabel('Rain / mm', fontsize=16)
plt.savefig('{}.png'.format(fn))
This is an extension of my previous question: Automate making multiple plots in python using several .csv files
See Question&Answers more detail:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…