Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
511 views
in Technique[技术] by (71.8m points)

python - Getting TypeError: can't pickle _thread.RLock objects

Read a number of similar questions, most of them mentioned that you shouldn't try to serialize an unserializable object. I am not able to understand the issue. I am able to save the model as .h5 file but that doesn't serve the purpose of what I am trying to do. Please Help!

    def image_generator(train_data_dir, test_data_dir):
        train_datagen = ImageDataGenerator(rescale=1/255,
                                          rotation_range = 30,  
                                          zoom_range = 0.2, 
                                          width_shift_range=0.1,  
                                          height_shift_range=0.1,
                                          validation_split = 0.15)
      
        test_datagen = ImageDataGenerator(rescale=1/255)
        
        train_generator = train_datagen.flow_from_directory(train_data_dir,
                                      target_size = (160,160),
                                      batch_size = 32,
                                      class_mode = 'categorical',
                                      subset='training')
        
        val_generator = train_datagen.flow_from_directory(train_data_dir,
                                      target_size = (160,160),
                                      batch_size = 32,
                                      class_mode = 'categorical',
                                      subset = 'validation')
        
        test_generator = test_datagen.flow_from_directory(test_data_dir,
                                     target_size=(160,160),
                                     batch_size = 32,
                                     class_mode = 'categorical')
        return train_generator, val_generator, test_generator
    
    def model_output_for_TL (pre_trained_model, last_output):    
        x = Flatten()(last_output)
        
        # Dense hidden layer
        x = Dense(512, activation='relu')(x)
        x = Dropout(0.2)(x)
        
        # Output neuron. 
        x = Dense(2, activation='softmax')(x)
        
        model = Model(pre_trained_model.input, x)
        
        return model
    
    train_generator, validation_generator, test_generator = image_generator(train_dir,test_dir)
    
    pre_trained_model = InceptionV3(input_shape = (160, 160, 3), 
                                    include_top = False, 
                                    weights = 'imagenet')
    for layer in pre_trained_model.layers:
      layer.trainable = False
    last_layer = pre_trained_model.get_layer('mixed5')
    last_output = last_layer.output
    model_TL = model_output_for_TL(pre_trained_model, last_output)
    
    model_TL.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
    
    history_TL = model_TL.fit(
          train_generator,
          steps_per_epoch=10,  
          epochs=10,
          verbose=1,
          validation_data = validation_generator)
    
    pickle.dump(model_TL,open('img_model.pkl','wb'))
See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

I was able to replicate your issue in TF 2.3.0 using Google Colab

import pickle
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense

model = Sequential()
model.add(Dense(1, input_dim=42, activation='sigmoid'))
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

with open('model.pkl', 'wb') as f:
    pickle.dump(model, f)

Output:

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-1-afb2bf58a891> in <module>()
      8 
      9 with open('model.pkl', 'wb') as f:
---> 10     pickle.dump(model, f)

TypeError: can't pickle _thread.RLock objects

@adriangb, proposed hot fix to this issue in github for more details please refer this

import pickle

from tensorflow.keras.models import Sequential, Model
from tensorflow.keras.layers import Dense
from tensorflow.python.keras.layers import deserialize, serialize
from tensorflow.python.keras.saving import saving_utils


def unpack(model, training_config, weights):
    restored_model = deserialize(model)
    if training_config is not None:
        restored_model.compile(
            **saving_utils.compile_args_from_training_config(
                training_config
            )
        )
    restored_model.set_weights(weights)
    return restored_model

# Hotfix function
def make_keras_picklable():

    def __reduce__(self):
        model_metadata = saving_utils.model_metadata(self)
        training_config = model_metadata.get("training_config", None)
        model = serialize(self)
        weights = self.get_weights()
        return (unpack, (model, training_config, weights))

    cls = Model
    cls.__reduce__ = __reduce__

# Run the function
make_keras_picklable()

# Create the model
model = Sequential()
model.add(Dense(1, input_dim=42, activation='sigmoid'))
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

# Save
with open('model.pkl', 'wb') as f:
    pickle.dump(model, f)

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...