Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
434 views
in Technique[技术] by (71.8m points)

algorithm - Comparison of the runtime of Nearest Neighbor queries on different data structures

Given n points in d-dimensional space, there are several data structures, such as Kd-Trees, Quadtrees, etc. to index the points. On these data structures it is possible to implement straight-forward algorithm for nearest neighbor queries around a given input point. Is there a book, paper, survey, ... that compares the theoretical (mostly expected) runtime of the nearest neighbor query on different data structures? The data I am looking at is composed of fairly small point clouds, so it can all be processed in main memory. For the sake of simplicity, I assume the data to be uniformly distributed. That is, im am not interested in real-world performance, but rather theoretical results

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

You let the dimension of the points undefined and you just give an approximation for the number of points. What does small means? It's relative what one person means by small.

What you search, of course, doesn't exist. Your question is pretty much this:


Question:

For a small (whatever does small means to you) dataset, of any dimension with data that follow a uniform distribution, what's the optimal data structure to use?

Answer:

There is no such data structure.


Wouldn't it be too strange to have an answer on that? A false analogy would be to put as a synonym of this question, the "Which is the optimal programming language?" question that most of the first year undergrads have. Your question is not that naive, but it's walking on the same track.


Why there is no such data structure?

Because, the dimension of the dataset is variable. This means, that you might have a dataset in 2 dimensions, but it could also mean that you have a dataset in 1000 dimensions, or even better a dataset in 1000 dimensions, with an intrinsic dimension that is much less than 1000. Think about it, could one propose a data structure that would behave equally good for the three datasets I mentioned it? I doubt it.

In fact, there are some data structures that behave really nicely in low dimensions (quadtrees and KD-trees for example), while others are doing much better in higher dimensions (RKD-tree forest for instance).

Moreover, the algorithms and the expectations used for Nearest Neighbour search are heavily dependent on the dimension of the dataset (as well as the size of the dataset and the nature of the queries (for example a query that is too far from the dataset or equidistant from the points of the dataset will probably result in a slow search performance)).

In lower dimensions, one would perform a k-Nearest Neighbour(k-NN) search. In higher dimensions, it would be more wise to perform k-Approximate NN search. In this case, we follow the following trade-off:

Speed VS accuracy

What happens is that we achieve faster execution of the program, by sacrificing the correctness of our result. In other words, our search routine will be relatively fast, but it may (the possibility of this depends on many parameters, such as the nature of your problem and the library you are using) not return the true NN, but an approximation of the exact NN. For example it might not find the exact NN, but the third NN to the query point. You could also check the approximate-nn-searching wiki tag.

Why not always searching for the exact NN? Because of the curse of dimensionality, which results in the solutions provided in the lower dimensions to behave as good as the brute force would do (search all the points in the dataset for every query).


You see my answer already got big, so I should stop here. Your question is too broad, but interesting, I must admit. :)


In conclusion, which would be the optimal data structure (and algorithm) to use depends on your problem. The size of the dataset you are handling, the dimension and the intrinsic dimension of the points play a key role. The number and the nature of the queries also play an important role.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...