Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
445 views
in Technique[技术] by (71.8m points)

algorithm - What is the best way to compute trending topics or tags?

Many sites offer some statistics like "The hottest topics in the last 24h". For example, Topix.com shows this in its section "News Trends". There, you can see the topics which have the fastest growing number of mentions.

I want to compute such a "buzz" for a topic, too. How could I do this? The algorithm should weight the topics which are always hot less. The topics which normally (almost) no one mentions should be the hottest ones.

Google offers "Hot Trends", topix.com shows "Hot Topics", fav.or.it shows "Keyword Trends" - all these services have one thing in common: They only show you upcoming trends which are abnormally hot at the moment.

Terms like "Britney Spears", "weather" or "Paris Hilton" won't appear in these lists because they're always hot and frequent. This article calls this "The Britney Spears Problem".

My question: How can you code an algorithm or use an existing one to solve this problem? Having a list with the keywords searched in the last 24h, the algorithm should show you the 10 (for example) hottest ones.

I know, in the article above, there is some kind of algorithm mentioned. I've tried to code it in PHP but I don't think that it'll work. It just finds the majority, doesn't it?

I hope you can help me (coding examples would be great).

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

This problem calls for a z-score or standard score, which will take into account the historical average, as other people have mentioned, but also the standard deviation of this historical data, making it more robust than just using the average.

In your case a z-score is calculated by the following formula, where the trend would be a rate such as views / day.

z-score = ([current trend] - [average historic trends]) / [standard deviation of historic trends]

When a z-score is used, the higher or lower the z-score the more abnormal the trend, so for example if the z-score is highly positive then the trend is abnormally rising, while if it is highly negative it is abnormally falling. So once you calculate the z-score for all the candidate trends the highest 10 z-scores will relate to the most abnormally increasing z-scores.

Please see Wikipedia for more information, about z-scores.

Code

from math import sqrt

def zscore(obs, pop):
    # Size of population.
    number = float(len(pop))
    # Average population value.
    avg = sum(pop) / number
    # Standard deviation of population.
    std = sqrt(sum(((c - avg) ** 2) for c in pop) / number)
    # Zscore Calculation.
    return (obs - avg) / std

Sample Output

>>> zscore(12, [2, 4, 4, 4, 5, 5, 7, 9])
3.5
>>> zscore(20, [21, 22, 19, 18, 17, 22, 20, 20])
0.0739221270955
>>> zscore(20, [21, 22, 19, 18, 17, 22, 20, 20, 1, 2, 3, 1, 2, 1, 0, 1])
1.00303599234
>>> zscore(2, [21, 22, 19, 18, 17, 22, 20, 20, 1, 2, 3, 1, 2, 1, 0, 1])
-0.922793112954
>>> zscore(9, [1, 2, 0, 3, 1, 3, 1, 2, 9, 8, 7, 10, 9, 5, 2, 4, 1, 1, 0])
1.65291949506

Notes

  • You can use this method with a sliding window (i.e. last 30 days) if you wish not to take to much history into account, which will make short term trends more pronounced and can cut down on the processing time.

  • You could also use a z-score for values such as change in views from one day to next day to locate the abnormal values for increasing/decreasing views per day. This is like using the slope or derivative of the views per day graph.

  • If you keep track of the current size of the population, the current total of the population, and the current total of x^2 of the population, you don't need to recalculate these values, only update them and hence you only need to keep these values for the history, not each data value. The following code demonstrates this.

      from math import sqrt
    
      class zscore:
          def __init__(self, pop = []):
              self.number = float(len(pop))
              self.total = sum(pop)
              self.sqrTotal = sum(x ** 2 for x in pop)
          def update(self, value):
              self.number += 1.0
              self.total += value
              self.sqrTotal += value ** 2
          def avg(self):
              return self.total / self.number
          def std(self):
              return sqrt((self.sqrTotal / self.number) - self.avg() ** 2)
          def score(self, obs):
              return (obs - self.avg()) / self.std()
    
  • Using this method your work flow would be as follows. For each topic, tag, or page create a floating point field, for the total number of days, sum of views, and sum of views squared in your database. If you have historic data, initialize these fields using that data, otherwise initialize to zero. At the end of each day, calculate the z-score using the day's number of views against the historic data stored in the three database fields. The topics, tags, or pages, with the highest X z-scores are your X "hotest trends" of the day. Finally update each of the 3 fields with the day's value and repeat the process next day.

New Addition

Normal z-scores as discussed above do not take into account the order of the data and hence the z-score for an observation of '1' or '9' would have the same magnitude against the sequence [1, 1, 1, 1, 9, 9, 9, 9]. Obviously for trend finding, the most current data should have more weight than older data and hence we want the '1' observation to have a larger magnitude score than the '9' observation. In order to achieve this I propose a floating average z-score. It should be clear that this method is NOT guaranteed to be statistically sound but should be useful for trend finding or similar. The main difference between the standard z-score and the floating average z-score is the use of a floating average to calculate the average population value and the average population value squared. See code for details:

Code

class fazscore:
    def __init__(self, decay, pop = []):
        self.sqrAvg = self.avg = 0
        # The rate at which the historic data's effect will diminish.
        self.decay = decay
        for x in pop: self.update(x)
    def update(self, value):
        # Set initial averages to the first value in the sequence.
        if self.avg == 0 and self.sqrAvg == 0:
            self.avg = float(value)
            self.sqrAvg = float((value ** 2))
        # Calculate the average of the rest of the values using a 
        # floating average.
        else:
            self.avg = self.avg * self.decay + value * (1 - self.decay)
            self.sqrAvg = self.sqrAvg * self.decay + (value ** 2) * (1 - self.decay)
        return self
    def std(self):
        # Somewhat ad-hoc standard deviation calculation.
        return sqrt(self.sqrAvg - self.avg ** 2)
    def score(self, obs):
        if self.std() == 0: return (obs - self.avg) * float("infinity")
        else: return (obs - self.avg) / self.std()

Sample IO

>>> fazscore(0.8, [1, 1, 1, 1, 1, 1, 9, 9, 9, 9, 9, 9]).score(1)
-1.67770595327
>>> fazscore(0.8, [1, 1, 1, 1, 1, 1, 9, 9, 9, 9, 9, 9]).score(9)
0.596052006642
>>> fazscore(0.9, [2, 4, 4, 4, 5, 5, 7, 9]).score(12)
3.46442230724
>>> fazscore(0.9, [2, 4, 4, 4, 5, 5, 7, 9]).score(22)
7.7773245459
>>> fazscore(0.9, [21, 22, 19, 18, 17, 22, 20, 20]).score(20)
-0.24633160155
>>> fazscore(0.9, [21, 22, 19, 18, 17, 22, 20, 20, 1, 2, 3, 1, 2, 1, 0, 1]).score(20)
1.1069362749
>>> fazscore(0.9, [21, 22, 19, 18, 17, 22, 20, 20, 1, 2, 3, 1, 2, 1, 0, 1]).score(2)
-0.786764452966
>>> fazscore(0.9, [1, 2, 0, 3, 1, 3, 1, 2, 9, 8, 7, 10, 9, 5, 2, 4, 1, 1, 0]).score(9)
1.82262469243
>>> fazscore(0.8, [40] * 200).score(1)
-inf

Update

As David Kemp correctly pointed out, if given a series of constant values and then a zscore for an observed value which differs from the other values is requested the result should probably be non-zero. In fact the value returned should be infinity. So I changed this line,

if self.std() == 0: return 0

to:

if self.std() == 0: return (obs - self.avg) * float("infinity")

This change is reflected in the fazscore solution code. If one does not want to deal with infinite values an acceptable solution could be to instead change the line to:

if self.std() == 0: return obs - self.avg

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...