In the most simple terms, threads are generally considered to be preemptive (although this may not always be true, depending on the operating system) while fibers are considered to be light-weight, cooperative threads. Both are separate execution paths for your application.
With threads: the current execution path may be interrupted or preempted at any time (note: this statement is a generalization and may not always hold true depending on OS/threading package/etc.). This means that for threads, data integrity is a big issue because one thread may be stopped in the middle of updating a chunk of data, leaving the integrity of the data in a bad or incomplete state. This also means that the operating system can take advantage of multiple CPUs and CPU cores by running more than one thread at the same time and leaving it up to the developer to guard data access.
With fibers: the current execution path is only interrupted when the fiber yields execution (same note as above). This means that fibers always start and stop in well-defined places, so data integrity is much less of an issue. Also, because fibers are often managed in the user space, expensive context switches and CPU state changes need not be made, making changing from one fiber to the next extremely efficient. On the other hand, since no two fibers can run at exactly the same time, just using fibers alone will not take advantage of multiple CPUs or multiple CPU cores.
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…