Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
172 views
in Technique[技术] by (71.8m points)

python - Efficient method of calculating density of irregularly spaced points

I am attempting to generate map overlay images that would assist in identifying hot-spots, that is areas on the map that have high density of data points. None of the approaches that I've tried are fast enough for my needs. Note: I forgot to mention that the algorithm should work well under both low and high zoom scenarios (or low and high data point density).

I looked through numpy, pyplot and scipy libraries, and the closest I could find was numpy.histogram2d. As you can see in the image below, the histogram2d output is rather crude. (Each image includes points overlaying the heatmap for better understanding)

enter image description here My second attempt was to iterate over all the data points, and then calculate the hot-spot value as a function of distance. This produced a better looking image, however it is too slow to use in my application. Since it's O(n), it works ok with 100 points, but blows out when I use my actual dataset of 30000 points.

My final attempt was to store the data in an KDTree, and use the nearest 5 points to calculate the hot-spot value. This algorithm is O(1), so much faster with large dataset. It's still not fast enough, it takes about 20 seconds to generate a 256x256 bitmap, and I would like this to happen in around 1 second time.

Edit

The boxsum smoothing solution provided by 6502 works well at all zoom levels and is much faster than my original methods.

The gaussian filter solution suggested by Luke and Neil G is the fastest.

You can see all four approaches below, using 1000 data points in total, at 3x zoom there are around 60 points visible.

enter image description here

Complete code that generates my original 3 attempts, the boxsum smoothing solution provided by 6502 and gaussian filter suggested by Luke (improved to handle edges better and allow zooming in) is here:

import matplotlib
import numpy as np
from matplotlib.mlab import griddata
import matplotlib.cm as cm
import matplotlib.pyplot as plt
import math
from scipy.spatial import KDTree
import time
import scipy.ndimage as ndi


def grid_density_kdtree(xl, yl, xi, yi, dfactor):
    zz = np.empty([len(xi),len(yi)], dtype=np.uint8)
    zipped = zip(xl, yl)
    kdtree = KDTree(zipped)
    for xci in range(0, len(xi)):
        xc = xi[xci]
        for yci in range(0, len(yi)):
            yc = yi[yci]
            density = 0.
            retvalset = kdtree.query((xc,yc), k=5)
            for dist in retvalset[0]:
                density = density + math.exp(-dfactor * pow(dist, 2)) / 5
            zz[yci][xci] = min(density, 1.0) * 255
    return zz

def grid_density(xl, yl, xi, yi):
    ximin, ximax = min(xi), max(xi)
    yimin, yimax = min(yi), max(yi)
    xxi,yyi = np.meshgrid(xi,yi)
    #zz = np.empty_like(xxi)
    zz = np.empty([len(xi),len(yi)])
    for xci in range(0, len(xi)):
        xc = xi[xci]
        for yci in range(0, len(yi)):
            yc = yi[yci]
            density = 0.
            for i in range(0,len(xl)):
                xd = math.fabs(xl[i] - xc)
                yd = math.fabs(yl[i] - yc)
                if xd < 1 and yd < 1:
                    dist = math.sqrt(math.pow(xd, 2) + math.pow(yd, 2))
                    density = density + math.exp(-5.0 * pow(dist, 2))
            zz[yci][xci] = density
    return zz

def boxsum(img, w, h, r):
    st = [0] * (w+1) * (h+1)
    for x in xrange(w):
        st[x+1] = st[x] + img[x]
    for y in xrange(h):
        st[(y+1)*(w+1)] = st[y*(w+1)] + img[y*w]
        for x in xrange(w):
            st[(y+1)*(w+1)+(x+1)] = st[(y+1)*(w+1)+x] + st[y*(w+1)+(x+1)] - st[y*(w+1)+x] + img[y*w+x]
    for y in xrange(h):
        y0 = max(0, y - r)
        y1 = min(h, y + r + 1)
        for x in xrange(w):
            x0 = max(0, x - r)
            x1 = min(w, x + r + 1)
            img[y*w+x] = st[y0*(w+1)+x0] + st[y1*(w+1)+x1] - st[y1*(w+1)+x0] - st[y0*(w+1)+x1]

def grid_density_boxsum(x0, y0, x1, y1, w, h, data):
    kx = (w - 1) / (x1 - x0)
    ky = (h - 1) / (y1 - y0)
    r = 15
    border = r * 2
    imgw = (w + 2 * border)
    imgh = (h + 2 * border)
    img = [0] * (imgw * imgh)
    for x, y in data:
        ix = int((x - x0) * kx) + border
        iy = int((y - y0) * ky) + border
        if 0 <= ix < imgw and 0 <= iy < imgh:
            img[iy * imgw + ix] += 1
    for p in xrange(4):
        boxsum(img, imgw, imgh, r)
    a = np.array(img).reshape(imgh,imgw)
    b = a[border:(border+h),border:(border+w)]
    return b

def grid_density_gaussian_filter(x0, y0, x1, y1, w, h, data):
    kx = (w - 1) / (x1 - x0)
    ky = (h - 1) / (y1 - y0)
    r = 20
    border = r
    imgw = (w + 2 * border)
    imgh = (h + 2 * border)
    img = np.zeros((imgh,imgw))
    for x, y in data:
        ix = int((x - x0) * kx) + border
        iy = int((y - y0) * ky) + border
        if 0 <= ix < imgw and 0 <= iy < imgh:
            img[iy][ix] += 1
    return ndi.gaussian_filter(img, (r,r))  ## gaussian convolution

def generate_graph():    
    n = 1000
    # data points range
    data_ymin = -2.
    data_ymax = 2.
    data_xmin = -2.
    data_xmax = 2.
    # view area range
    view_ymin = -.5
    view_ymax = .5
    view_xmin = -.5
    view_xmax = .5
    # generate data
    xl = np.random.uniform(data_xmin, data_xmax, n)    
    yl = np.random.uniform(data_ymin, data_ymax, n)
    zl = np.random.uniform(0, 1, n)

    # get visible data points
    xlvis = []
    ylvis = []
    for i in range(0,len(xl)):
        if view_xmin < xl[i] < view_xmax and view_ymin < yl[i] < view_ymax:
            xlvis.append(xl[i])
            ylvis.append(yl[i])

    fig = plt.figure()


    # plot histogram
    plt1 = fig.add_subplot(221)
    plt1.set_axis_off()
    t0 = time.clock()
    zd, xe, ye = np.histogram2d(yl, xl, bins=10, range=[[view_ymin, view_ymax],[view_xmin, view_xmax]], normed=True)
    plt.title('numpy.histogram2d - '+str(time.clock()-t0)+"sec")
    plt.imshow(zd, origin='lower', extent=[view_xmin, view_xmax, view_ymin, view_ymax])
    plt.scatter(xlvis, ylvis)


    # plot density calculated with kdtree
    plt2 = fig.add_subplot(222)
    plt2.set_axis_off()
    xi = np.linspace(view_xmin, view_xmax, 256)
    yi = np.linspace(view_ymin, view_ymax, 256)
    t0 = time.clock()
    zd = grid_density_kdtree(xl, yl, xi, yi, 70)
    plt.title('function of 5 nearest using kdtree
'+str(time.clock()-t0)+"sec")
    cmap=cm.jet
    A = (cmap(zd/256.0)*255).astype(np.uint8)
    #A[:,:,3] = zd  
    plt.imshow(A , origin='lower', extent=[view_xmin, view_xmax, view_ymin, view_ymax])
    plt.scatter(xlvis, ylvis)

    # gaussian filter
    plt3 = fig.add_subplot(223)
    plt3.set_axis_off()
    t0 = time.clock()
    zd = grid_density_gaussian_filter(view_xmin, view_ymin, view_xmax, view_ymax, 256, 256, zip(xl, yl))
    plt.title('ndi.gaussian_filter - '+str(time.clock()-t0)+"sec")
    plt.imshow(zd , origin='lower', extent=[view_xmin, view_xmax, view_ymin, view_ymax])
    plt.scatter(xlvis, ylvis)

    # boxsum smoothing
    plt3 = fig.add_subplot(224)
    plt3.set_axis_off()
    t0 = time.clock()
    zd = grid_density_boxsum(view_xmin, view_ymin, view_xmax, view_ymax, 256, 256, zip(xl, yl))
    plt.title('boxsum smoothing - '+str(time.clock()-t0)+"sec")
    plt.imshow(zd, origin='lower', extent=[view_xmin, view_xmax, view_ymin, view_ymax])
    plt.scatter(xlvis, ylvis)

if __name__=='__main__':
    generate_graph()
    plt.show()
See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

This approach is along the lines of some previous answers: increment a pixel for each spot, then smooth the image with a gaussian filter. A 256x256 image runs in about 350ms on my 6-year-old laptop.

import numpy as np
import scipy.ndimage as ndi

data = np.random.rand(30000,2)           ## create random dataset
inds = (data * 255).astype('uint')       ## convert to indices

img = np.zeros((256,256))                ## blank image
for i in xrange(data.shape[0]):          ## draw pixels
    img[inds[i,0], inds[i,1]] += 1

img = ndi.gaussian_filter(img, (10,10))

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...