There are two perf problems induced by the Point struct. Something you can see when you add Console.WriteLine(GC.CollectionCount(0));
to the test code. You'll see that the Point test requires ~3720 collections but the string test only needs ~18 collections. Not for free. When you see a value type induce so many collections then you need to conclude "uh-oh, too much boxing".
At issue is that HashSet<T>
needs an IEqualityComparer<T>
to get its job done. Since you did not provide one, it needs to fall back to one returned by EqualityComparer.Default<T>()
. That method can do a good job for string, it implements IEquatable. But not for Point, it is a type that harks from .NET 1.0 and never got the generics love. All it can do is use the Object methods.
The other issue is that Point.GetHashCode() does not do a stellar job in this test, too many collisions, so it hammers Object.Equals() pretty heavily. String has an excellent GetHashCode implementation.
You can solve both problems by providing the HashSet with a good comparer. Like this one:
class PointComparer : IEqualityComparer<Point> {
public bool Equals(Point x, Point y) {
return x.X == y.X && x.Y == y.Y;
}
public int GetHashCode(Point obj) {
// Perfect hash for practical bitmaps, their width/height is never >= 65536
return (obj.Y << 16) ^ obj.X;
}
}
And use it:
HashSet<Point> list = new HashSet<Point>(new PointComparer());
And it is now about 150 times faster, easily beating the string test.
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…