I use a tensorflow to implement a simple multi-layer perceptron for regression. The code is modified from standard mnist classifier, that I only changed the output cost to MSE (use tf.reduce_mean(tf.square(pred-y))
), and some input, output size settings. However, if I train the network using regression, after several epochs, the output batch are totally the same. for example:
target: 48.129, estimated: 42.634
target: 46.590, estimated: 42.634
target: 34.209, estimated: 42.634
target: 69.677, estimated: 42.634
......
I have tried different batch size, different initialization, input normalization using sklearn.preprocessing.scale (my inputs range are quite different). However, none of them worked. I have also tried one of sklearn example from Tensorflow (Deep Neural Network Regression with Boston Data). But I got another error in line 40:
'module' object has no attribute 'infer_real_valued_columns_from_input'
Anyone has clues on where the problem is? Thank you
My code is listed below, may be a little bit long, but very straghtforward:
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from tensorflow.contrib import learn
import matplotlib.pyplot as plt
from sklearn.pipeline import Pipeline
from sklearn import datasets, linear_model
from sklearn import cross_validation
import numpy as np
boston = learn.datasets.load_dataset('boston')
x, y = boston.data, boston.target
X_train, X_test, Y_train, Y_test = cross_validation.train_test_split(
x, y, test_size=0.2, random_state=42)
total_len = X_train.shape[0]
# Parameters
learning_rate = 0.001
training_epochs = 500
batch_size = 10
display_step = 1
dropout_rate = 0.9
# Network Parameters
n_hidden_1 = 32 # 1st layer number of features
n_hidden_2 = 200 # 2nd layer number of features
n_hidden_3 = 200
n_hidden_4 = 256
n_input = X_train.shape[1]
n_classes = 1
# tf Graph input
x = tf.placeholder("float", [None, 13])
y = tf.placeholder("float", [None])
# Create model
def multilayer_perceptron(x, weights, biases):
# Hidden layer with RELU activation
layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
layer_1 = tf.nn.relu(layer_1)
# Hidden layer with RELU activation
layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
layer_2 = tf.nn.relu(layer_2)
# Hidden layer with RELU activation
layer_3 = tf.add(tf.matmul(layer_2, weights['h3']), biases['b3'])
layer_3 = tf.nn.relu(layer_3)
# Hidden layer with RELU activation
layer_4 = tf.add(tf.matmul(layer_3, weights['h4']), biases['b4'])
layer_4 = tf.nn.relu(layer_4)
# Output layer with linear activation
out_layer = tf.matmul(layer_4, weights['out']) + biases['out']
return out_layer
# Store layers weight & bias
weights = {
'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1], 0, 0.1)),
'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2], 0, 0.1)),
'h3': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_3], 0, 0.1)),
'h4': tf.Variable(tf.random_normal([n_hidden_3, n_hidden_4], 0, 0.1)),
'out': tf.Variable(tf.random_normal([n_hidden_4, n_classes], 0, 0.1))
}
biases = {
'b1': tf.Variable(tf.random_normal([n_hidden_1], 0, 0.1)),
'b2': tf.Variable(tf.random_normal([n_hidden_2], 0, 0.1)),
'b3': tf.Variable(tf.random_normal([n_hidden_3], 0, 0.1)),
'b4': tf.Variable(tf.random_normal([n_hidden_4], 0, 0.1)),
'out': tf.Variable(tf.random_normal([n_classes], 0, 0.1))
}
# Construct model
pred = multilayer_perceptron(x, weights, biases)
# Define loss and optimizer
cost = tf.reduce_mean(tf.square(pred-y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
# Launch the graph
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
# Training cycle
for epoch in range(training_epochs):
avg_cost = 0.
total_batch = int(total_len/batch_size)
# Loop over all batches
for i in range(total_batch-1):
batch_x = X_train[i*batch_size:(i+1)*batch_size]
batch_y = Y_train[i*batch_size:(i+1)*batch_size]
# Run optimization op (backprop) and cost op (to get loss value)
_, c, p = sess.run([optimizer, cost, pred], feed_dict={x: batch_x,
y: batch_y})
# Compute average loss
avg_cost += c / total_batch
# sample prediction
label_value = batch_y
estimate = p
err = label_value-estimate
print ("num batch:", total_batch)
# Display logs per epoch step
if epoch % display_step == 0:
print ("Epoch:", '%04d' % (epoch+1), "cost=",
"{:.9f}".format(avg_cost))
print ("[*]----------------------------")
for i in xrange(3):
print ("label value:", label_value[i],
"estimated value:", estimate[i])
print ("[*]============================")
print ("Optimization Finished!")
# Test model
correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
# Calculate accuracy
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print ("Accuracy:", accuracy.eval({x: X_test, y: Y_test}))
See Question&Answers more detail:
os