You can define your own aggregate function and then use it with a window specification to get the aggregate output at each stage rather than a single value.
So an aggregate is a piece of state, and a transform function to modify that state for each row, and optionally a finalising function to convert the state to an output value. For a simple case like this, just a transform function should be sufficient.
create function ema_func(numeric, numeric) returns numeric
language plpgsql as $$
declare
alpha numeric := 0.5;
begin
-- uncomment the following line to see what the parameters mean
-- raise info 'ema_func: % %', $1, $2;
return case
when $1 is null then $2
else alpha * $2 + (1 - alpha) * $1
end;
end
$$;
create aggregate ema(basetype = numeric, sfunc = ema_func, stype = numeric);
which gives me:
steve@steve@[local] =# select x, ema(x, 0.1) over(w), ema(x, 0.2) over(w) from data window w as (order by n asc) limit 5;
x | ema | ema
-----------+---------------+---------------
44.988564 | 44.988564 | 44.988564
39.5634 | 44.4460476 | 43.9035312
38.605724 | 43.86201524 | 42.84396976
38.209646 | 43.296778316 | 41.917105008
44.541264 | 43.4212268844 | 42.4419368064
These numbers seem to match up to the spreadsheet you added to the question.
Also, you can define the function to pass alpha as a parameter from the statement:
create or replace function ema_func(state numeric, inval numeric, alpha numeric)
returns numeric
language plpgsql as $$
begin
return case
when state is null then inval
else alpha * inval + (1-alpha) * state
end;
end
$$;
create aggregate ema(numeric, numeric) (sfunc = ema_func, stype = numeric);
select x, ema(x, 0.5 /* alpha */) over (order by n asc) from data
Also, this function is actually so simple that it doesn't need to be in plpgsql at all, but can be just a sql function, although you can't refer to parameters by name in one of those:
create or replace function ema_func(state numeric, inval numeric, alpha numeric)
returns numeric
language sql as $$
select case
when $1 is null then $2
else $3 * $2 + (1-$3) * $1
end
$$;