I have a problem where I produce a pandas dataframe by concatenating along the row axis (stacking vertically).
Each of the constituent dataframes has an autogenerated index (ascending numbers).
After concatenation, my index is screwed up: it counts up to n (where n is the shape[0] of the corresponding dataframe), and restarts at zero at the next dataframe.
I am trying to "re-calculate the index, given the current order", or "re-index" (or so I thought). Turns out that isn't exactly what DataFrame.reindex
seems to be doing.
Here is what I tried to do:
train_df = pd.concat(train_class_df_list)
train_df = train_df.reindex(index=[i for i in range(train_df.shape[0])])
It failed with "cannot reindex from a duplicate axis." I don't want to change the order of my data... just need to delete the old index and set up a new one, with the order of rows preserved.
See Question&Answers more detail:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…