Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
605 views
in Technique[技术] by (71.8m points)

scala - Adding two columns to existing DataFrame using withColumn

I have a DataFrame with a few columns. Now I want to add two more columns to the existing DataFrame.

Currently I am doing this using withColumn method in DataFrame.

for example:

df.withColumn("newColumn1", udf(col("somecolumn")))
  .withColumn("newColumn2", udf(col("somecolumn")))

Actually I can return both newcoOlumn values in single UDF method using Array[String]. But currently this is how I am doing it.

Is there anyway, I can do this effectively? using explode is the good option here?

Even if I have to use explode, I have to use withColumn once, then return the column value as Array[String], then using explode, create two more columns.

Which one is effective? or is there any alternatives?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

AFAIk you need to call withColumn twice (once for each new column). But if your udf is computationally expensive, you can avoid to call it twice with storing the "complex" result in a temporary column and then "unpacking" the result e.g. using the apply method of column (which gives access to the array element). Note that sometimes it's necessary to cache the intermediate result (to prevent that the UDF is called twice per row during unpacking), sometimes it's not needed. This seems to depend on how spark the optimizes the plan :

val myUDf = udf((s:String) => Array(s.toUpperCase(),s.toLowerCase()))

val df = sc.parallelize(Seq("Peter","John")).toDF("name")

val newDf = df
  .withColumn("udfResult",myUDf(col("name"))).cache 
  .withColumn("uppercaseColumn", col("udfResult")(0))
  .withColumn("lowercaseColumn", col("udfResult")(1))
  .drop("udfResult")

newDf.show()

gives

+-----+---------------+---------------+
| name|uppercaseColumn|lowercaseColumn|
+-----+---------------+---------------+
|Peter|          PETER|          peter|
| John|           JOHN|           john|
+-----+---------------+---------------+

With an UDF returning a tuple, the unpacking would look like this:

val newDf = df
    .withColumn("udfResult",myUDf(col("name"))).cache
    .withColumn("lowercaseColumn", col("udfResult._1"))
    .withColumn("uppercaseColumn", col("udfResult._2"))
    .drop("udfResult")

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...