Your algorithm is much too simplistic. You have a right idea, checking consecutive pairs of elements that the earlier element is less than the later element, but more is required.
Make a routine first_bad_pair(sequence)
that checks the list that all pairs of elements are in order. If so, return the value -1
. Otherwise, return the index of the earlier element: this will be a value from 0
to n-2
. Then one algorithm that would work is to check the original list. If it works, fine, but if not try deleting the earlier or later offending elements. If either of those work, fine, otherwise not fine.
I can think of other algorithms but this one seems the most straightforward. If you do not like the up-to-two temporary lists that are made by combining two slices of the original list, the equivalent could be done with comparisons in the original list using more if
statements.
Here is Python code that passes all the tests you show.
def first_bad_pair(sequence):
"""Return the first index of a pair of elements where the earlier
element is not less than the later elements. If no such pair
exists, return -1."""
for i in range(len(sequence)-1):
if sequence[i] >= sequence[i+1]:
return i
return -1
def almostIncreasingSequence(sequence):
"""Return whether it is possible to obtain a strictly increasing
sequence by removing no more than one element from the array."""
j = first_bad_pair(sequence)
if j == -1:
return True # List is increasing
if first_bad_pair(sequence[j-1:j] + sequence[j+1:]) == -1:
return True # Deleting earlier element makes increasing
if first_bad_pair(sequence[j:j+1] + sequence[j+2:]) == -1:
return True # Deleting later element makes increasing
return False # Deleting either does not make increasing
If you do want to avoid those temporary lists, here is other code that has a more complicated pair-checking routine.
def first_bad_pair(sequence, k):
"""Return the first index of a pair of elements in sequence[]
for indices k-1, k+1, k+2, k+3, ... where the earlier element is
not less than the later element. If no such pair exists, return -1."""
if 0 < k < len(sequence) - 1:
if sequence[k-1] >= sequence[k+1]:
return k-1
for i in range(k+1, len(sequence)-1):
if sequence[i] >= sequence[i+1]:
return i
return -1
def almostIncreasingSequence(sequence):
"""Return whether it is possible to obtain a strictly increasing
sequence by removing no more than one element from the array."""
j = first_bad_pair(sequence, -1)
if j == -1:
return True # List is increasing
if first_bad_pair(sequence, j) == -1:
return True # Deleting earlier element makes increasing
if first_bad_pair(sequence, j+1) == -1:
return True # Deleting later element makes increasing
return False # Deleting either does not make increasing
And here are the tests I used.
print('
These should be True.')
print(almostIncreasingSequence([]))
print(almostIncreasingSequence([1]))
print(almostIncreasingSequence([1, 2]))
print(almostIncreasingSequence([1, 2, 3]))
print(almostIncreasingSequence([1, 3, 2]))
print(almostIncreasingSequence([10, 1, 2, 3, 4, 5]))
print(almostIncreasingSequence([0, -2, 5, 6]))
print(almostIncreasingSequence([1, 1]))
print(almostIncreasingSequence([1, 2, 3, 4, 3, 6]))
print(almostIncreasingSequence([1, 2, 3, 4, 99, 5, 6]))
print(almostIncreasingSequence([1, 2, 2, 3]))
print('
These should be False.')
print(almostIncreasingSequence([1, 3, 2, 1]))
print(almostIncreasingSequence([3, 2, 1]))
print(almostIncreasingSequence([1, 1, 1]))