I am trying to adapt this MNIST example to binary classification.
But when changing my NLABELS
from NLABELS=2
to NLABELS=1
, the loss function always returns 0 (and accuracy 1).
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
# Import data
mnist = input_data.read_data_sets('data', one_hot=True)
NLABELS = 2
sess = tf.InteractiveSession()
# Create the model
x = tf.placeholder(tf.float32, [None, 784], name='x-input')
W = tf.Variable(tf.zeros([784, NLABELS]), name='weights')
b = tf.Variable(tf.zeros([NLABELS], name='bias'))
y = tf.nn.softmax(tf.matmul(x, W) + b)
# Add summary ops to collect data
_ = tf.histogram_summary('weights', W)
_ = tf.histogram_summary('biases', b)
_ = tf.histogram_summary('y', y)
# Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, NLABELS], name='y-input')
# More name scopes will clean up the graph representation
with tf.name_scope('cross_entropy'):
cross_entropy = -tf.reduce_mean(y_ * tf.log(y))
_ = tf.scalar_summary('cross entropy', cross_entropy)
with tf.name_scope('train'):
train_step = tf.train.GradientDescentOptimizer(10.).minimize(cross_entropy)
with tf.name_scope('test'):
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
_ = tf.scalar_summary('accuracy', accuracy)
# Merge all the summaries and write them out to /tmp/mnist_logs
merged = tf.merge_all_summaries()
writer = tf.train.SummaryWriter('logs', sess.graph_def)
tf.initialize_all_variables().run()
# Train the model, and feed in test data and record summaries every 10 steps
for i in range(1000):
if i % 10 == 0: # Record summary data and the accuracy
labels = mnist.test.labels[:, 0:NLABELS]
feed = {x: mnist.test.images, y_: labels}
result = sess.run([merged, accuracy, cross_entropy], feed_dict=feed)
summary_str = result[0]
acc = result[1]
loss = result[2]
writer.add_summary(summary_str, i)
print('Accuracy at step %s: %s - loss: %f' % (i, acc, loss))
else:
batch_xs, batch_ys = mnist.train.next_batch(100)
batch_ys = batch_ys[:, 0:NLABELS]
feed = {x: batch_xs, y_: batch_ys}
sess.run(train_step, feed_dict=feed)
I have checked the dimensions of both batch_ys
(fed into y
) and _y
and they are both 1xN matrices when NLABELS=1
so the problem seems to be prior to that. Maybe something to do with the matrix multiplication?
I actually have got this same problem in a real project, so any help would be appreciated... Thanks!
See Question&Answers more detail:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…