Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
250 views
in Technique[技术] by (71.8m points)

python - Duplicate strings in a list and add integer suffixes to newly added ones

Suppose I have a list:

l = ['a', 'b', 'c']

And its suffix list:

l2 = ['a_1', 'b_1', 'c_1']

I'd like the desired output to be:

out_l = ['a', 'a_1', 'b', 'b_2', 'c', 'c_3']

The result is the interleaved version of the two lists above.

I can write regular for loop to get this done, but I'm wondering if there's a more Pythonic way (e.g., using list comprehension or lambda) to get it done.

I've tried something like this:

list(map(lambda x: x[1]+'_'+str(x[0]+1), enumerate(a)))
# this only returns ['a_1', 'b_2', 'c_3']

Furthermore, what changes would need to be made for the general case i.e., for 2 or more lists where l2 is not necessarily a derivative of l?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

yield

You can use a generator for an elegant solution. At each iteration, yield twice—once with the original element, and once with the element with the added suffix.

The generator will need to be exhausted; that can be done by tacking on a list call at the end.

def transform(l):
    for i, x in enumerate(l, 1):
        yield x
        yield f'{x}_{i}'  # {}_{}'.format(x, i)

You can also re-write this using the yield from syntax for generator delegation:

def transform(l):
    for i, x in enumerate(l, 1):
        yield from (x, f'{x}_{i}') # (x, {}_{}'.format(x, i))

out_l = list(transform(l))
print(out_l)
['a', 'a_1', 'b', 'b_2', 'c', 'c_3']

If you're on versions older than python-3.6, replace f'{x}_{i}' with '{}_{}'.format(x, i).

Generalising
Consider a general scenario where you have N lists of the form:

l1 = [v11, v12, ...]
l2 = [v21, v22, ...]
l3 = [v31, v32, ...]
...

Which you would like to interleave. These lists are not necessarily derived from each other.

To handle interleaving operations with these N lists, you'll need to iterate over pairs:

def transformN(*args):
    for vals in zip(*args):
        yield from vals

out_l = transformN(l1, l2, l3, ...)

Sliced list.__setitem__

I'd recommend this from the perspective of performance. First allocate space for an empty list, and then assign list items to their appropriate positions using sliced list assignment. l goes into even indexes, and l' (l modified) goes into odd indexes.

out_l = [None] * (len(l) * 2)
out_l[::2] = l
out_l[1::2] = [f'{x}_{i}' for i, x in enumerate(l, 1)]  # [{}_{}'.format(x, i) ...]

print(out_l)
['a', 'a_1', 'b', 'b_2', 'c', 'c_3']

This is consistently the fastest from my timings (below).

Generalising
To handle N lists, iteratively assign to slices.

list_of_lists = [l1, l2, ...]

out_l = [None] * len(list_of_lists[0]) * len(list_of_lists)
for i, l in enumerate(list_of_lists):
    out_l[i::2] = l

zip + chain.from_iterable

A functional approach, similar to @chrisz' solution. Construct pairs using zip and then flatten it using itertools.chain.

from itertools import chain
# [{}_{}'.format(x, i) ...]
out_l = list(chain.from_iterable(zip(l, [f'{x}_{i}' for i, x in enumerate(l, 1)]))) 

print(out_l)
['a', 'a_1', 'b', 'b_2', 'c', 'c_3']

iterools.chain is widely regarded as the pythonic list flattening approach.

Generalising
This is the simplest solution to generalise, and I suspect the most efficient for multiple lists when N is large.

list_of_lists = [l1, l2, ...]
out_l = list(chain.from_iterable(zip(*list_of_lists)))

Performance

Let's take a look at some perf-tests for the simple case of two lists (one list with its suffix). General cases will not be tested since the results widely vary with by data.

enter image description here

Benchmarking code, for reference.

Functions

def cs1(l):
    def _cs1(l):
        for i, x in enumerate(l, 1):
            yield x
            yield f'{x}_{i}'

    return list(_cs1(l))

def cs2(l):
    out_l = [None] * (len(l) * 2)
    out_l[::2] = l
    out_l[1::2] = [f'{x}_{i}' for i, x in enumerate(l, 1)]

    return out_l

def cs3(l):
    return list(chain.from_iterable(
        zip(l, [f'{x}_{i}' for i, x in enumerate(l, 1)])))

def ajax(l):
    return [
        i for b in [[a, '{}_{}'.format(a, i)] 
        for i, a in enumerate(l, start=1)] 
        for i in b
    ]

def ajax_cs0(l):
    # suggested improvement to ajax solution
    return [j for i, a in enumerate(l, 1) for j in [a, '{}_{}'.format(a, i)]]

def chrisz(l):
    return [
        val 
        for pair in zip(l, [f'{k}_{j+1}' for j, k in enumerate(l)]) 
        for val in pair
    ]

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...