First, this is a really great question! After digging around a bit in the multiprocessing
code, I think I've found a way to do this:
When you start a multiprocessing.Pool
, internally the Pool
object creates a multiprocessing.Process
object for each member of the pool. When those sub-processes are starting up, they call a _bootstrap
function, which looks like this:
def _bootstrap(self):
from . import util
global _current_process
try:
# ... (stuff we don't care about)
util._finalizer_registry.clear()
util._run_after_forkers()
util.info('child process calling self.run()')
try:
self.run()
exitcode = 0
finally:
util._exit_function()
# ... (more stuff we don't care about)
The run
method is what actually runs the target
you gave the Process
object. For a Pool
process that's a method with a long-running while loop that waits for work items to come in over an internal queue. What's really interesting for us is what happened after self.run
: util._exit_function()
is called.
As it turns out, that function does some clean up that sounds a lot like what you're looking for:
def _exit_function(info=info, debug=debug, _run_finalizers=_run_finalizers,
active_children=active_children,
current_process=current_process):
# NB: we hold on to references to functions in the arglist due to the
# situation described below, where this function is called after this
# module's globals are destroyed.
global _exiting
info('process shutting down')
debug('running all "atexit" finalizers with priority >= 0') # Very interesting!
_run_finalizers(0)
Here's the docstring of _run_finalizers
:
def _run_finalizers(minpriority=None):
'''
Run all finalizers whose exit priority is not None and at least minpriority
Finalizers with highest priority are called first; finalizers with
the same priority will be called in reverse order of creation.
'''
The method actually runs through a list of finalizer callbacks and executes them:
items = [x for x in _finalizer_registry.items() if f(x)]
items.sort(reverse=True)
for key, finalizer in items:
sub_debug('calling %s', finalizer)
try:
finalizer()
except Exception:
import traceback
traceback.print_exc()
Perfect. So how do we get into the _finalizer_registry
? There's an undocumented object called Finalize
in multiprocessing.util
that is responsible for adding a callback to the registry:
class Finalize(object):
'''
Class which supports object finalization using weakrefs
'''
def __init__(self, obj, callback, args=(), kwargs=None, exitpriority=None):
assert exitpriority is None or type(exitpriority) is int
if obj is not None:
self._weakref = weakref.ref(obj, self)
else:
assert exitpriority is not None
self._callback = callback
self._args = args
self._kwargs = kwargs or {}
self._key = (exitpriority, _finalizer_counter.next())
self._pid = os.getpid()
_finalizer_registry[self._key] = self # That's what we're looking for!
Ok, so putting it all together into an example:
import multiprocessing
from multiprocessing.util import Finalize
resource_cm = None
resource = None
class Resource(object):
def __init__(self, args):
self.args = args
def __enter__(self):
print("in __enter__ of %s" % multiprocessing.current_process())
return self
def __exit__(self, *args, **kwargs):
print("in __exit__ of %s" % multiprocessing.current_process())
def open_resource(args):
return Resource(args)
def _worker_init(args):
global resource
print("calling init")
resource_cm = open_resource(args)
resource = resource_cm.__enter__()
# Register a finalizer
Finalize(resource, resource.__exit__, exitpriority=16)
def hi(*args):
print("we're in the worker")
if __name__ == "__main__":
pool = multiprocessing.Pool(initializer=_worker_init, initargs=("abc",))
pool.map(hi, range(pool._processes))
pool.close()
pool.join()
Output:
calling init
in __enter__ of <Process(PoolWorker-1, started daemon)>
calling init
calling init
in __enter__ of <Process(PoolWorker-2, started daemon)>
in __enter__ of <Process(PoolWorker-3, started daemon)>
calling init
in __enter__ of <Process(PoolWorker-4, started daemon)>
we're in the worker
we're in the worker
we're in the worker
we're in the worker
in __exit__ of <Process(PoolWorker-1, started daemon)>
in __exit__ of <Process(PoolWorker-2, started daemon)>
in __exit__ of <Process(PoolWorker-3, started daemon)>
in __exit__ of <Process(PoolWorker-4, started daemon)>
As you can see __exit__
gets called in all our workers when we join()
the pool.