I run the following code to convert the text matrix to TF-IDF matrix.
text = ['This is a string','This is another string','TFIDF computation calculation','TfIDF is the product of TF and IDF']
from sklearn.feature_extraction.text import TfidfVectorizer
vectorizer = TfidfVectorizer(max_df=1.0, min_df=1, stop_words='english',norm = None)
X = vectorizer.fit_transform(text)
X_vovab = vectorizer.get_feature_names()
X_mat = X.todense()
X_idf = vectorizer.idf_
I get the following output
X_vovab =
[u'calculation',
u'computation',
u'idf',
u'product',
u'string',
u'tf',
u'tfidf']
and X_mat =
([[ 0. , 0. , 0. , 0. , 1.51082562,
0. , 0. ],
[ 0. , 0. , 0. , 0. , 1.51082562,
0. , 0. ],
[ 1.91629073, 1.91629073, 0. , 0. , 0. ,
0. , 1.51082562],
[ 0. , 0. , 1.91629073, 1.91629073, 0. ,
1.91629073, 1.51082562]])
Now I dont understand how these scores are computed. My idea is that for the text[0], score for only 'string' is computed and there is a score in the 5th coloumn. But as TF_IDF is the product of term frequency which is 2 and IDF which is log(4/2) is 1.39 and not 1.51 as shown in the matrix. How is the TF-IDF score calculated in scikit-learn.
See Question&Answers more detail:
os