Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
109 views
in Technique[技术] by (71.8m points)

python - Remove row with null value from pandas data frame

I'm trying to remove a row from my data frame in which one of the columns has a value of null. Most of the help I can find relates to removing NaN values which hasn't worked for me so far.

Here I've created the data frame:

  # successfully crated data frame
 df1 = ut.get_data(symbols, dates) # column heads are 'SPY', 'BBD'

# can't get rid of row containing null val in column BBD
# tried each of these with the others commented out but always had an 
# error or sometimes I was able to get a new column of boolean values
# but i just want to drop the row
df1 = pd.notnull(df1['BBD']) # drops rows with null val, not working
df1 = df1.drop(2010-05-04, axis=0)
df1 = df1[df1.'BBD' != null]
df1 = df1.dropna(subset=['BBD'])
df1 = pd.notnull(df1.BBD)


# I know the date to drop but still wasn't able to drop the row
df1.drop([2015-10-30])
df1.drop(['2015-10-30'])
df1.drop([2015-10-30], axis=0)
df1.drop(['2015-10-30'], axis=0)


with pd.option_context('display.max_row', None):
    print(df1)

Here is my output:

Output

Can someone please tell me how I can drop this row, preferably both by identifying the row by the null value and how to drop by date?

I haven't been working with pandas very long and I've been stuck on this for an hour. Any advice would be much appreciated.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

This should do the work:

df = df.dropna(how='any',axis=0) 

It will erase every row (axis=0) that has "any" Null value in it.

EXAMPLE:

#Recreate random DataFrame with Nan values
df = pd.DataFrame(index = pd.date_range('2017-01-01', '2017-01-10', freq='1d'))
# Average speed in miles per hour
df['A'] = np.random.randint(low=198, high=205, size=len(df.index))
df['B'] = np.random.random(size=len(df.index))*2

#Create dummy NaN value on 2 cells
df.iloc[2,1]=None
df.iloc[5,0]=None

print(df)
                A         B
2017-01-01  203.0  1.175224
2017-01-02  199.0  1.338474
2017-01-03  198.0       NaN
2017-01-04  198.0  0.652318
2017-01-05  199.0  1.577577
2017-01-06    NaN  0.234882
2017-01-07  203.0  1.732908
2017-01-08  204.0  1.473146
2017-01-09  198.0  1.109261
2017-01-10  202.0  1.745309

#Delete row with dummy value
df = df.dropna(how='any',axis=0)

print(df)

                A         B
2017-01-01  203.0  1.175224
2017-01-02  199.0  1.338474
2017-01-04  198.0  0.652318
2017-01-05  199.0  1.577577
2017-01-07  203.0  1.732908
2017-01-08  204.0  1.473146
2017-01-09  198.0  1.109261
2017-01-10  202.0  1.745309

See the reference for further detail.

If everything is OK with your DataFrame, dropping NaNs should be as easy as that. If this is still not working, make sure you have the proper datatypes defined for your column (pd.to_numeric comes to mind...)


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...