I'm trying to remove a row from my data frame in which one of the columns has a value of null. Most of the help I can find relates to removing NaN values which hasn't worked for me so far.
Here I've created the data frame:
# successfully crated data frame
df1 = ut.get_data(symbols, dates) # column heads are 'SPY', 'BBD'
# can't get rid of row containing null val in column BBD
# tried each of these with the others commented out but always had an
# error or sometimes I was able to get a new column of boolean values
# but i just want to drop the row
df1 = pd.notnull(df1['BBD']) # drops rows with null val, not working
df1 = df1.drop(2010-05-04, axis=0)
df1 = df1[df1.'BBD' != null]
df1 = df1.dropna(subset=['BBD'])
df1 = pd.notnull(df1.BBD)
# I know the date to drop but still wasn't able to drop the row
df1.drop([2015-10-30])
df1.drop(['2015-10-30'])
df1.drop([2015-10-30], axis=0)
df1.drop(['2015-10-30'], axis=0)
with pd.option_context('display.max_row', None):
print(df1)
Here is my output:
Can someone please tell me how I can drop this row, preferably both by identifying the row by the null value and how to drop by date?
I haven't been working with pandas very long and I've been stuck on this for an hour. Any advice would be much appreciated.
See Question&Answers more detail:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…