Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
440 views
in Technique[技术] by (71.8m points)

algorithm - How to construct BST given post-order traversal

I know there are ways to construct a tree from pre-order traversal (as an array). The more common question is to construct it, given the inorder and pre-order traversals. In this case, although the inorder traversal is redundant, it definitely makes things easier. Can anybody give me an idea how to do it for a post-order traversal? Both iterative and recursive solutions are required.

I tried to do it iteratively using stack, but couldn't at all get the logic right, so got a horrible messy tree. Same went for recursion.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

If you have an array from a post-order traversal of a BST, you know that the root is the last element of the array. The left child of the root takes up the first part of the array, and consists of entries smaller than the root. Then follows the right child, consisting of elements larger than the root. (Both children may be empty).

________________________________
|             |              |R|
--------------------------------
 left child     right child   root

So the main problem is to find the point where the left child ends and the right begins.

Both children are also obtained from their post-order traversal, so constructing them is done in the same way, recursively.

BST fromPostOrder(value[] nodes) {
    // No nodes, no tree
    if (nodes == null) return null;
    return recursiveFromPostOrder(nodes, 0,  nodes.length - 1);
}

// Construct a BST from a segment of the nodes array
// That segment is assumed to be the post-order traversal of some subtree
private BST recursiveFromPostOrder(value[] nodes, 
                                   int leftIndex, int rightIndex) {
    // Empty segment -> empty tree
    if (rightIndex < leftIndex) return null;
    // single node -> single element tree
    if (rightIndex == leftIndex) return new BST(nodes[leftIndex]);

    // It's a post-order traversal, so the root of the tree 
    // is in the last position
    value rootval = nodes[rightIndex];

    // Construct the root node, the left and right subtrees are then 
    // constructed in recursive calls, after finding their extent
    BST root = new BST(rootval);

    // It's supposed to be the post-order traversal of a BST, so
    // * left child comes first
    // * all values in the left child are smaller than the root value
    // * all values in the right child are larger than the root value
    // Hence we find the last index in the range [leftIndex .. rightIndex-1]
    // that holds a value smaller than rootval
    int leftLast = findLastSmaller(nodes, leftIndex, rightIndex-1, rootval);

    // The left child occupies the segment [leftIndex .. leftLast]
    // (may be empty) and that segment is the post-order traversal of it
    root.left = recursiveFromPostOrder(nodes, leftIndex, leftLast);

    // The right child occupies the segment [leftLast+1 .. rightIndex-1]
    // (may be empty) and that segment is the post-order traversal of it
    root.right = recursiveFromPostOrder(nodes, leftLast + 1, rightIndex-1);

    // Both children constructed and linked to the root, done.
    return root;
}

// find the last index of a value smaller than cut in a segment of the array
// using binary search
// supposes that the segment contains the concatenation of the post-order
// traversals of the left and right subtrees of a node with value cut,
// in particular, that the first (possibly empty) part of the segment contains
// only values < cut, and the second (possibly empty) part only values > cut
private int findLastSmaller(value[] nodes, int first, int last, value cut) {

    // If the segment is empty, or the first value is larger than cut,
    // by the assumptions, there is no value smaller than cut in the segment,
    // return the position one before the start of the segment
    if (last < first || nodes[first] > cut) return first - 1;

    int low = first, high = last, mid;

    // binary search for the last index of a value < cut
    // invariants: nodes[low] < cut 
    //             (since cut is the root value and a BST has no dupes)
    // and nodes[high] > cut, or (nodes[high] < cut < nodes[high+1]), or
    // nodes[high] < cut and high == last, the latter two cases mean that
    // high is the last index in the segment holding a value < cut
    while (low < high && nodes[high] > cut) {

        // check the middle of the segment
        // In the case high == low+1 and nodes[low] < cut < nodes[high]
        // we'd make no progress if we chose mid = (low+high)/2, since that
        // would then be mid = low, so we round the index up instead of down
        mid = low + (high-low+1)/2;

        // The choice of mid guarantees low < mid <= high, so whichever
        // case applies, we will either set low to a strictly greater index
        // or high to a strictly smaller one, hence we won't become stuck.
        if (nodes[mid] > cut) {
            // The last index of a value < cut is in the first half
            // of the range under consideration, so reduce the upper
            // limit of that. Since we excluded mid as a possible
            // last index, the upper limit becomes mid-1
            high = mid-1;
        } else {
            // nodes[mid] < cut, so the last index with a value < cut is
            // in the range [mid .. high]
            low = mid;
        }
    }
    // now either low == high or nodes[high] < cut and high is the result
    // in either case by the loop invariants
    return high;
}

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

1.4m articles

1.4m replys

5 comments

57.0k users

...