Many people apparently rely on an implementation (link to source code) of the method described in 2006 in the following paper (link to PDF):
Tropp, Oren, Ayellet Tal, and Ilan Shimshoni. "A fast triangle to
triangle intersection test for collision detection." Computer
Animation and Virtual Worlds 17.5 (2006): 527-535.
There is however a problem with that code (except for adopting an old programming style, using unconventional notations and loosing the underlying geometrical interpretation): "determinant thing" don't necessarily make your math more robust, if done the wrong way.
I suggest to either use Moeller's method (link to PDF) or take a look at Delliver's paper (link to PDF), implemented in the CGAL library (link, "Triangle_3_Triangle_3_do_intersect.h").
An example: the intersection routine implemented above tells that the triangles (p0,p1,p2) and (q0,q1,q2) defined by the following points
p0 = (-21, -72, 63)
p1 = (-78, 99, 40)
p2 = (-19, -78, -83)
q0 = (96, 77, -51)
q1 = (-95, -1, -16)
q2 = (9, 5, -21)
are not intersecting. Here is a picture of the triangles:
And here is the code snippet (append to original code):
#include <iostream>
inline void setPoint(double p[3], const double x, const double y, const double z)
{
p[0] = x; p[1] = y; p[2] = z;
}
inline void computeEdges(double v0[3], double v1[3], const double p0[3], const double p1[3], const double p2[3])
{
v0[0] = p1[0]-p0[0];
v0[1] = p1[1]-p0[1];
v0[2] = p1[2]-p0[2];
v1[0] = p2[0]-p0[0];
v1[1] = p2[1]-p0[1];
v1[2] = p2[2]-p0[2];
}
void main()
{
unsigned int numErrors(0), count(0);
double p0[3], p1[3], p2[3], q0[3], q1[3], q2[3];
double v0[3], v1[3], w0[3], w1[3];
bool res, answer;
int ret;
std::cout << "Testing the correctness of tr_tri_intersect3D" << std::endl;
{
// Non excluding triangles in generic positions, big determinants, intersecting
++count;
setPoint(p0, -21, -72, 63);
setPoint(p1, -78, 99, 40);
setPoint(p2, -19, -78, -83);
setPoint(q0, 96, 77, -51);
setPoint(q1, -95, -1, -16);
setPoint(q2, 9, 5, -21);
answer = true;
computeEdges(v0, v1, p0, p1, p2);
computeEdges(w0, w1, q0, q1, q2);
int ret = tr_tri_intersect3D(p0, v0, v1, q0, w0, w1);
bool res = ( ret != 0 );
if( res != answer )
{
std::cout << "# wrong answer on test " << count << "!
";
++numErrors;
}
}
}
A final note on the number of arithmetic operations: since the method takes in input pre-computed edge vectors, 12 +/- operations should be added to Table I. of the paper.
Last but not least: please verify what I am writing on your own and give me feedback if you think that I misunderstood something!