drop_duplicates won't work with lists in your dataframe as the error message implies. However, you can drop duplicates on the dataframe casted as str and then extract the rows from original df using the index from the results.
Setup
df = pd.DataFrame({'Keyword': {0: 'apply', 1: 'apply', 2: 'apply', 3: 'terms', 4: 'terms'},
'X': {0: [1, 2], 1: [1, 2], 2: 'xy', 3: 'xx', 4: 'yy'},
'Y': {0: 'yy', 1: 'yy', 2: 'yx', 3: 'ix', 4: 'xi'}})
#Drop directly causes the same error
df.drop_duplicates()
Traceback (most recent call last):
...
TypeError: unhashable type: 'list'
Solution
#convert hte df to str type, drop duplicates and then select the rows from original df.
df.loc[df.astype(str).drop_duplicates().index]
Out[205]:
Keyword X Y
0 apply [1, 2] yy
2 apply xy yx
3 terms xx ix
4 terms yy xi
#the list elements are still list in the final results.
df.loc[df.astype(str).drop_duplicates().index].loc[0,'X']
Out[207]: [1, 2]
Edit: replaced iloc with loc. In this particular case, both work as the
index matches the positional index, but it is not general
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…