You are looking for (minimum) edit distance / (minimum) edit sequence. You can find the theory of the process here:
https://web.stanford.edu/class/cs124/lec/med.pdf
Let's implement (simplest) Levenstein Distance / Sequence algorithm (for details see https://en.wikipedia.org/wiki/Levenshtein_distance). Let's start from helper classes (I've changed a bit your implementation of them):
public enum EditOperationKind : byte {
None, // Nothing to do
Add, // Add new character
Edit, // Edit character into character (including char into itself)
Remove, // Delete existing character
};
public struct EditOperation {
public EditOperation(char valueFrom, char valueTo, EditOperationKind operation) {
ValueFrom = valueFrom;
ValueTo = valueTo;
Operation = valueFrom == valueTo ? EditOperationKind.None : operation;
}
public char ValueFrom { get; }
public char ValueTo {get ;}
public EditOperationKind Operation { get; }
public override string ToString() {
switch (Operation) {
case EditOperationKind.None:
return $"'{ValueTo}' Equal";
case EditOperationKind.Add:
return $"'{ValueTo}' Add";
case EditOperationKind.Remove:
return $"'{ValueFrom}' Remove";
case EditOperationKind.Edit:
return $"'{ValueFrom}' to '{ValueTo}' Edit";
default:
return "???";
}
}
}
As far as I can see from the examples provided we don't have any edit operation, but add + remove; that's why I've put editCost = 2
when insertCost = 1
, int removeCost = 1
(in case of tie: insert + remove
vs. edit
we put insert + remove
).
Now we are ready to implement Levenstein algorithm:
public static EditOperation[] EditSequence(
string source, string target,
int insertCost = 1, int removeCost = 1, int editCost = 2) {
if (null == source)
throw new ArgumentNullException("source");
else if (null == target)
throw new ArgumentNullException("target");
// Forward: building score matrix
// Best operation (among insert, update, delete) to perform
EditOperationKind[][] M = Enumerable
.Range(0, source.Length + 1)
.Select(line => new EditOperationKind[target.Length + 1])
.ToArray();
// Minimum cost so far
int[][] D = Enumerable
.Range(0, source.Length + 1)
.Select(line => new int[target.Length + 1])
.ToArray();
// Edge: all removes
for (int i = 1; i <= source.Length; ++i) {
M[i][0] = EditOperationKind.Remove;
D[i][0] = removeCost * i;
}
// Edge: all inserts
for (int i = 1; i <= target.Length; ++i) {
M[0][i] = EditOperationKind.Add;
D[0][i] = insertCost * i;
}
// Having fit N - 1, K - 1 characters let's fit N, K
for (int i = 1; i <= source.Length; ++i)
for (int j = 1; j <= target.Length; ++j) {
// here we choose the operation with the least cost
int insert = D[i][j - 1] + insertCost;
int delete = D[i - 1][j] + removeCost;
int edit = D[i - 1][j - 1] + (source[i - 1] == target[j - 1] ? 0 : editCost);
int min = Math.Min(Math.Min(insert, delete), edit);
if (min == insert)
M[i][j] = EditOperationKind.Add;
else if (min == delete)
M[i][j] = EditOperationKind.Remove;
else if (min == edit)
M[i][j] = EditOperationKind.Edit;
D[i][j] = min;
}
// Backward: knowing scores (D) and actions (M) let's building edit sequence
List<EditOperation> result =
new List<EditOperation>(source.Length + target.Length);
for (int x = target.Length, y = source.Length; (x > 0) || (y > 0);) {
EditOperationKind op = M[y][x];
if (op == EditOperationKind.Add) {
x -= 1;
result.Add(new EditOperation('', target[x], op));
}
else if (op == EditOperationKind.Remove) {
y -= 1;
result.Add(new EditOperation(source[y], '', op));
}
else if (op == EditOperationKind.Edit) {
x -= 1;
y -= 1;
result.Add(new EditOperation(source[y], target[x], op));
}
else // Start of the matching (EditOperationKind.None)
break;
}
result.Reverse();
return result.ToArray();
}
Demo:
var sequence = EditSequence("asdfghjk", "wsedrftr");
Console.Write(string.Join(Environment.NewLine, sequence));
Outcome:
'a' Remove
'w' Add
's' Equal
'e' Add
'd' Equal
'r' Add
'f' Equal
'g' Remove
'h' Remove
'j' Remove
'k' Remove
't' Add
'r' Add