For all m, n ≥ 0 it is valid that max(m, n) ≤ m + n → max(m, n) in O(m + n), and m + n ≤ 2max(m, n) → m + n in O(max(m, n)).
Thus O(max(m, n)) = O(m + n).
ADDENDUM: If f belongs O(m + n) then a constant D > 0 exists, that f(n, m) < D * (m + n) for m and n large enough. Thus f(n, m) < 2 D * max(m, n), and O(m + n) must be a subset of O(max(m, n)). The proof of O(max(m, n)) is a subset of O(m + n) is made analogously.
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…