Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
166 views
in Technique[技术] by (71.8m points)

python - Plot 3D convex closed regions in matplotlib

I am trying to plot in 3D a polytope defined by a set of inequalities. Essentially, I try to reproduce the functionality of this matlab plotregion library in matplotlib.

My approach is to get the intersection vertices, construct the convex hull of them, and then get and plot the resulting faces (simplices).

The problem is that many simplices are coplanar, and they are making the plot very busy for no reason (see all of these diagonal edges in the plot below).

Is there any easy way to just print the "outside" edges of the polyhedron, without having to consolidate by my self, one by one, all of the coplanar simplices?

Thank you

from scipy.spatial import HalfspaceIntersection
from scipy.spatial import ConvexHull
import scipy as sp
import numpy as np
import matplotlib.pyplot as plt
import mpl_toolkits.mplot3d as a3
import matplotlib.colors as colors


w = np.array([1., 1., 1.])


# ∑? h? w? q? - ∑? g? w? <= 0 
#  q? - ub? <= 0
# -q? + lb? <= 0 
halfspaces = np.array([
                    [1.*w[0], 1.*w[1], 1.*w[2], -10 ],
                    [ 1.,  0.,  0., -4],
                    [ 0.,  1.,  0., -4],
                    [ 0.,  0.,  1., -4],
                    [-1.,  0.,  0.,  0],
                    [ 0., -1.,  0.,  0],
                    [ 0.,  0., -1.,  0]
                    ])
feasible_point = np.array([0.1, 0.1, 0.1])
hs = HalfspaceIntersection(halfspaces, feasible_point)
verts = hs.intersections
hull = ConvexHull(verts)
faces = hull.simplices

ax = a3.Axes3D(plt.figure())
ax.dist=10
ax.azim=30
ax.elev=10
ax.set_xlim([0,5])
ax.set_ylim([0,5])
ax.set_zlim([0,5])

for s in faces:
    sq = [
        [verts[s[0], 0], verts[s[0], 1], verts[s[0], 2]],
        [verts[s[1], 0], verts[s[1], 1], verts[s[1], 2]],
        [verts[s[2], 0], verts[s[2], 1], verts[s[2], 2]]
    ]

    f = a3.art3d.Poly3DCollection([sq])
    f.set_color(colors.rgb2hex(sp.rand(3)))
    f.set_edgecolor('k')
    f.set_alpha(0.1)
    ax.add_collection3d(f)

plt.show()

Result of the above code

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Pretty sure there is nothing native in matplotlib. Finding the faces that belong together is not particularly hard, though. The basic idea implemented below is that you create a graph, where each node is a triangle. You then connect triangles that are co-planar and adjacent. Finally, you find the connected components of the graph to determine which triangles form a face.

enter image description here

import numpy as np
from sympy import Plane, Point3D
import networkx as nx


def simplify(triangles):
    """
    Simplify an iterable of triangles such that adjacent and coplanar triangles form a single face.
    Each triangle is a set of 3 points in 3D space.
    """

    # create a graph in which nodes represent triangles;
    # nodes are connected if the corresponding triangles are adjacent and coplanar
    G = nx.Graph()
    G.add_nodes_from(range(len(triangles)))
    for ii, a in enumerate(triangles):
        for jj, b in enumerate(triangles):
            if (ii < jj): # test relationships only in one way as adjacency and co-planarity are bijective
                if is_adjacent(a, b):
                    if is_coplanar(a, b, np.pi / 180.):
                        G.add_edge(ii,jj)

    # triangles that belong to a connected component can be combined
    components = list(nx.connected_components(G))
    simplified = [set(flatten(triangles[index] for index in component)) for component in components]

    # need to reorder nodes so that patches are plotted correctly
    reordered = [reorder(face) for face in simplified]

    return reordered


def is_adjacent(a, b):
    return len(set(a) & set(b)) == 2 # i.e. triangles share 2 points and hence a side


def is_coplanar(a, b, tolerance_in_radians=0):
    a1, a2, a3 = a
    b1, b2, b3 = b
    plane_a = Plane(Point3D(a1), Point3D(a2), Point3D(a3))
    plane_b = Plane(Point3D(b1), Point3D(b2), Point3D(b3))
    if not tolerance_in_radians: # only accept exact results
        return plane_a.is_coplanar(plane_b)
    else:
        angle = plane_a.angle_between(plane_b).evalf()
        angle %= np.pi # make sure that angle is between 0 and np.pi
        return (angle - tolerance_in_radians <= 0.) or 
            ((np.pi - angle) - tolerance_in_radians <= 0.)


flatten = lambda l: [item for sublist in l for item in sublist]


def reorder(vertices):
    """
    Reorder nodes such that the resulting path corresponds to the "hull" of the set of points.

    Note:
    -----
    Not tested on edge cases, and likely to break.
    Probably only works for convex shapes.

    """
    if len(vertices) <= 3: # just a triangle
        return vertices
    else:
        # take random vertex (here simply the first)
        reordered = [vertices.pop()]
        # get next closest vertex that is not yet reordered
        # repeat until only one vertex remains in original list
        vertices = list(vertices)
        while len(vertices) > 1:
            idx = np.argmin(get_distance(reordered[-1], vertices))
            v = vertices.pop(idx)
            reordered.append(v)
        # add remaining vertex to output
        reordered += vertices
        return reordered


def get_distance(v1, v2):
    v2 = np.array(list(v2))
    difference = v2 - v1
    ssd = np.sum(difference**2, axis=1)
    return np.sqrt(ssd)

Applied to your example:

from scipy.spatial import HalfspaceIntersection
from scipy.spatial import ConvexHull
import scipy as sp
import numpy as np
import matplotlib.pyplot as plt
import mpl_toolkits.mplot3d as a3
import matplotlib.colors as colors


w = np.array([1., 1., 1.])


# ∑? h? w? q? - ∑? g? w? <= 0
#  q? - ub? <= 0
# -q? + lb? <= 0
halfspaces = np.array([
                    [1.*w[0], 1.*w[1], 1.*w[2], -10 ],
                    [ 1.,  0.,  0., -4],
                    [ 0.,  1.,  0., -4],
                    [ 0.,  0.,  1., -4],
                    [-1.,  0.,  0.,  0],
                    [ 0., -1.,  0.,  0],
                    [ 0.,  0., -1.,  0]
                    ])
feasible_point = np.array([0.1, 0.1, 0.1])
hs = HalfspaceIntersection(halfspaces, feasible_point)
verts = hs.intersections
hull = ConvexHull(verts)
faces = hull.simplices

ax = a3.Axes3D(plt.figure())
ax.dist=10
ax.azim=30
ax.elev=10
ax.set_xlim([0,5])
ax.set_ylim([0,5])
ax.set_zlim([0,5])

triangles = []
for s in faces:
    sq = [
        (verts[s[0], 0], verts[s[0], 1], verts[s[0], 2]),
        (verts[s[1], 0], verts[s[1], 1], verts[s[1], 2]),
        (verts[s[2], 0], verts[s[2], 1], verts[s[2], 2])
    ]
    triangles.append(sq)

new_faces = simplify(triangles)
for sq in new_faces:
    f = a3.art3d.Poly3DCollection([sq])
    f.set_color(colors.rgb2hex(sp.rand(3)))
    f.set_edgecolor('k')
    f.set_alpha(0.1)
    ax.add_collection3d(f)

# # rotate the axes and update
# for angle in range(0, 360):
#     ax.view_init(30, angle)
#     plt.draw()
#     plt.pause(.001)

Note

Upon reflection, the function reordered probably needs some more work. Pretty sure this will break for weird / non-convex shapes, and I am not even 100% sure that it will always work for convex shapes. Rest should be fine though.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...