Like many other people, I've always been confused by volatile reads/writes and fences. So now I'm trying to fully understand what these do.
So, a volatile read is supposed to (1) exhibit acquire-semantics and (2) guarantee that the value read is fresh, i.e., it is not a cached value. Let's focus on (2).
Now, I've read that, if you want to perform a volatile read, you should introduce an acquire fence (or a full fence) after the read, like this:
int local = shared;
Thread.MemoryBarrier();
How exactly does this prevent the read operation from using a previously cached value?
According to the definition of a fence (no read/stores are allowed to be moved above/below the fence), I would insert the fence before the read, preventing the read from crossing the fence and being moved backwards in time (aka, being cached).
How does preventing the read from being moved forwards in time (or subsequent instructions from being moved backwards in time) guarantee a volatile (fresh) read? How does it help?
Similarly, I believe that a volatile write should introduce a fence after the write operation, preventing the processor from moving the write forward in time (aka, delaying the write). I believe this would make the processor flush the write to the main memory.
But to my surprise, the C# implementation introduces the fence before the write!
[MethodImplAttribute(MethodImplOptions.NoInlining)] // disable optimizations
public static void VolatileWrite(ref int address, int value)
{
MemoryBarrier(); // Call MemoryBarrier to ensure the proper semantic in a portable way.
address = value;
}
Update
According to this example, apparently taken from "C# 4 in a Nutshell", fence 2 , placed after a write is supposed to force the write to be flushed to main memory immediately, and fence 3, placed before a read, is supposed to guarantee a fresh read:
class Foo{
int _answer;
bool complete;
void A(){
_answer = 123;
Thread.MemoryBarrier(); // Barrier 1
_complete = true;
Thread.MemoryBarrier(); // Barrier 2
}
void B(){
Thread.MemoryBarrier(); // Barrier 3;
if(_complete){
Thread.MemoryBarrier(); // Barrier 4;
Console.WriteLine(_answer);
}
}
}
The ideas in this book (and my own personal beliefs) seem to contradict the ideas behind C#'s VolatileRead
and VolatileWrite
implementations.
See Question&Answers more detail:
os