I am currently working on a project where I need do some steps of processing with legacy Matlab code (using the Matlab engine) and the rest in Python (numpy).
I noticed that converting the results from Matlab's matlab.mlarray.double
to numpy's numpy.ndarray
seems horribly slow.
Here is some example code for creating an ndarray with 1000 elements from another ndarray, a list and an mlarray:
import timeit
setup_range = ("import numpy as np
"
"x = range(1000)")
setup_arange = ("import numpy as np
"
"x = np.arange(1000)")
setup_matlab = ("import numpy as np
"
"import matlab.engine
"
"eng = matlab.engine.start_matlab()
"
"x = eng.linspace(0., 1000.-1., 1000.)")
print 'From other array'
print timeit.timeit('np.array(x)', setup=setup_arange, number=1000)
print 'From list'
print timeit.timeit('np.array(x)', setup=setup_range, number=1000)
print 'From matlab'
print timeit.timeit('np.array(x)', setup=setup_matlab, number=1000)
Which takes the following times:
From other array
0.00150722111994
From list
0.0705359556928
From matlab
7.0873282467
The conversion takes about 100 times as long as a conversion from list.
Is there any way to speed up the conversion?
See Question&Answers more detail:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…