To be able to use window function you have to create a window first. Definition is pretty much the same as for normal SQL it means you can define either order, partition or both. First lets create some dummy data:
import numpy as np
np.random.seed(1)
keys = ["foo"] * 10 + ["bar"] * 10
values = np.hstack([np.random.normal(0, 1, 10), np.random.normal(10, 1, 100)])
df = sqlContext.createDataFrame([
{"k": k, "v": round(float(v), 3)} for k, v in zip(keys, values)])
Make sure you're using HiveContext
(Spark < 2.0 only):
from pyspark.sql import HiveContext
assert isinstance(sqlContext, HiveContext)
Create a window:
from pyspark.sql.window import Window
w = Window.partitionBy(df.k).orderBy(df.v)
which is equivalent to
(PARTITION BY k ORDER BY v)
in SQL.
As a rule of thumb window definitions should always contain PARTITION BY
clause otherwise Spark will move all data to a single partition. ORDER BY
is required for some functions, while in different cases (typically aggregates) may be optional.
There are also two optional which can be used to define window span - ROWS BETWEEN
and RANGE BETWEEN
. These won't be useful for us in this particular scenario.
Finally we can use it for a query:
from pyspark.sql.functions import percentRank, ntile
df.select(
"k", "v",
percentRank().over(w).alias("percent_rank"),
ntile(3).over(w).alias("ntile3")
)
Note that ntile
is not related in any way to the quantiles.
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…