Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
422 views
in Technique[技术] by (71.8m points)

python - How to calculate differences between consecutive rows in pandas data frame?

I've got a data frame, df, with three columns: count_a, count_b and date; the counts are floats, and the dates are consecutive days in 2015.

I'm trying to figure out the difference between each day's counts in both the count_a and count_b columns —?meaning, I'm trying to calculate the difference between each row and the preceding row for both of those columns. I've set the date as the index, but am having trouble figuring out how to do this; there were a couple of hints about using pd.Series and pd.DataFrame.diff but I haven't had any luck finding an applicable answer or set of instructions.

I'm a bit stuck, and would appreciate some guidance here.

Here's what my data frame looks like:

df=pd.Dataframe({'count_a': {Timestamp('2015-01-01 00:00:00'): 34175.0,
  Timestamp('2015-01-02 00:00:00'): 72640.0,
  Timestamp('2015-01-03 00:00:00'): 109354.0,
  Timestamp('2015-01-04 00:00:00'): 144491.0,
  Timestamp('2015-01-05 00:00:00'): 180355.0,
  Timestamp('2015-01-06 00:00:00'): 214615.0,
  Timestamp('2015-01-07 00:00:00'): 250096.0,
  Timestamp('2015-01-08 00:00:00'): 287880.0,
  Timestamp('2015-01-09 00:00:00'): 332528.0,
  Timestamp('2015-01-10 00:00:00'): 381460.0,
  Timestamp('2015-01-11 00:00:00'): 422981.0,
  Timestamp('2015-01-12 00:00:00'): 463539.0,
  Timestamp('2015-01-13 00:00:00'): 505395.0,
  Timestamp('2015-01-14 00:00:00'): 549027.0,
  Timestamp('2015-01-15 00:00:00'): 595377.0,
  Timestamp('2015-01-16 00:00:00'): 649043.0,
  Timestamp('2015-01-17 00:00:00'): 707727.0,
  Timestamp('2015-01-18 00:00:00'): 761287.0,
  Timestamp('2015-01-19 00:00:00'): 814372.0,
  Timestamp('2015-01-20 00:00:00'): 867096.0,
  Timestamp('2015-01-21 00:00:00'): 920838.0,
  Timestamp('2015-01-22 00:00:00'): 983405.0,
  Timestamp('2015-01-23 00:00:00'): 1067243.0,
  Timestamp('2015-01-24 00:00:00'): 1164421.0,
  Timestamp('2015-01-25 00:00:00'): 1252178.0,
  Timestamp('2015-01-26 00:00:00'): 1341484.0,
  Timestamp('2015-01-27 00:00:00'): 1427600.0,
  Timestamp('2015-01-28 00:00:00'): 1511549.0,
  Timestamp('2015-01-29 00:00:00'): 1594846.0,
  Timestamp('2015-01-30 00:00:00'): 1694226.0,
  Timestamp('2015-01-31 00:00:00'): 1806727.0,
  Timestamp('2015-02-01 00:00:00'): 1899880.0,
  Timestamp('2015-02-02 00:00:00'): 1987978.0,
  Timestamp('2015-02-03 00:00:00'): 2080338.0,
  Timestamp('2015-02-04 00:00:00'): 2175775.0,
  Timestamp('2015-02-05 00:00:00'): 2279525.0,
  Timestamp('2015-02-06 00:00:00'): 2403306.0,
  Timestamp('2015-02-07 00:00:00'): 2545696.0,
  Timestamp('2015-02-08 00:00:00'): 2672464.0,
  Timestamp('2015-02-09 00:00:00'): 2794788.0},
 'count_b': {Timestamp('2015-01-01 00:00:00'): nan,
  Timestamp('2015-01-02 00:00:00'): nan,
  Timestamp('2015-01-03 00:00:00'): nan,
  Timestamp('2015-01-04 00:00:00'): nan,
  Timestamp('2015-01-05 00:00:00'): nan,
  Timestamp('2015-01-06 00:00:00'): nan,
  Timestamp('2015-01-07 00:00:00'): nan,
  Timestamp('2015-01-08 00:00:00'): nan,
  Timestamp('2015-01-09 00:00:00'): nan,
  Timestamp('2015-01-10 00:00:00'): nan,
  Timestamp('2015-01-11 00:00:00'): nan,
  Timestamp('2015-01-12 00:00:00'): nan,
  Timestamp('2015-01-13 00:00:00'): nan,
  Timestamp('2015-01-14 00:00:00'): nan,
  Timestamp('2015-01-15 00:00:00'): nan,
  Timestamp('2015-01-16 00:00:00'): nan,
  Timestamp('2015-01-17 00:00:00'): nan,
  Timestamp('2015-01-18 00:00:00'): nan,
  Timestamp('2015-01-19 00:00:00'): nan,
  Timestamp('2015-01-20 00:00:00'): nan,
  Timestamp('2015-01-21 00:00:00'): nan,
  Timestamp('2015-01-22 00:00:00'): nan,
  Timestamp('2015-01-23 00:00:00'): nan,
  Timestamp('2015-01-24 00:00:00'): 71.0,
  Timestamp('2015-01-25 00:00:00'): 150.0,
  Timestamp('2015-01-26 00:00:00'): 236.0,
  Timestamp('2015-01-27 00:00:00'): 345.0,
  Timestamp('2015-01-28 00:00:00'): 1239.0,
  Timestamp('2015-01-29 00:00:00'): 2228.0,
  Timestamp('2015-01-30 00:00:00'): 7094.0,
  Timestamp('2015-01-31 00:00:00'): 16593.0,
  Timestamp('2015-02-01 00:00:00'): 27190.0,
  Timestamp('2015-02-02 00:00:00'): 37519.0,
  Timestamp('2015-02-03 00:00:00'): 49003.0,
  Timestamp('2015-02-04 00:00:00'): 63323.0,
  Timestamp('2015-02-05 00:00:00'): 79846.0,
  Timestamp('2015-02-06 00:00:00'): 101568.0,
  Timestamp('2015-02-07 00:00:00'): 127120.0,
  Timestamp('2015-02-08 00:00:00'): 149955.0,
  Timestamp('2015-02-09 00:00:00'): 171440.0}})
See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

diff should give the desired result:

>>> df.diff()
count_a  count_b
2015-01-01      NaN      NaN
2015-01-02    38465      NaN
2015-01-03    36714      NaN
2015-01-04    35137      NaN
2015-01-05    35864      NaN
....
2015-02-07   142390    25552
2015-02-08   126768    22835
2015-02-09   122324    21485

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...