Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
632 views
in Technique[技术] by (71.8m points)

machine learning - Matlab:K-means clustering

I have a matrice of A(369x10) which I want to cluster in 19 clusters. I use this method

[idx ctrs]=kmeans(A,19)

which yields idx(369x1) and ctrs(19x10)

I get the point up to here.All my rows in A is clustered in 19 clusters.

Now I have an array B(49x10).I want to know where the rows of this B corresponds in the among given 19 clusters.

How is it possible in MATLAB?

Thank you in advance

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

The following is a a complete example on clustering:

%% generate sample data
K = 3;
numObservarations = 100;
dimensions = 3;
data = rand([numObservarations dimensions]);

%% cluster
opts = statset('MaxIter', 500, 'Display', 'iter');
[clustIDX, clusters, interClustSum, Dist] = kmeans(data, K, 'options',opts, ...
    'distance','sqEuclidean', 'EmptyAction','singleton', 'replicates',3);

%% plot data+clusters
figure, hold on
scatter3(data(:,1),data(:,2),data(:,3), 50, clustIDX, 'filled')
scatter3(clusters(:,1),clusters(:,2),clusters(:,3), 200, (1:K)', 'filled')
hold off, xlabel('x'), ylabel('y'), zlabel('z')

%% plot clusters quality
figure
[silh,h] = silhouette(data, clustIDX);
avrgScore = mean(silh);


%% Assign data to clusters
% calculate distance (squared) of all instances to each cluster centroid
D = zeros(numObservarations, K);     % init distances
for k=1:K
    %d = sum((x-y).^2).^0.5
    D(:,k) = sum( ((data - repmat(clusters(k,:),numObservarations,1)).^2), 2);
end

% find  for all instances the cluster closet to it
[minDists, clusterIndices] = min(D, [], 2);

% compare it with what you expect it to be
sum(clusterIndices == clustIDX)

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...