First a criticism: you're counting the number of significant figures wrong. In your example you want n=3, not 2.
It is possible to get around most of the edge cases by letting numpy library functions handle them if you use the function that makes the binary version of this algorithm simple: frexp. As a bonus, this algorithm will also run much faster because it never calls the log function.
#The following constant was computed in maxima 5.35.1 using 64 bigfloat digits of precision
__logBase10of2 = 3.010299956639811952137388947244930267681898814621085413104274611e-1
import numpy as np
def RoundToSigFigs_fp( x, sigfigs ):
"""
Rounds the value(s) in x to the number of significant figures in sigfigs.
Return value has the same type as x.
Restrictions:
sigfigs must be an integer type and store a positive value.
x must be a real value or an array like object containing only real values.
"""
if not ( type(sigfigs) is int or type(sigfigs) is long or
isinstance(sigfigs, np.integer) ):
raise TypeError( "RoundToSigFigs_fp: sigfigs must be an integer." )
if sigfigs <= 0:
raise ValueError( "RoundToSigFigs_fp: sigfigs must be positive." )
if not np.all(np.isreal( x )):
raise TypeError( "RoundToSigFigs_fp: all x must be real." )
#temporarily suppres floating point errors
errhanddict = np.geterr()
np.seterr(all="ignore")
matrixflag = False
if isinstance(x, np.matrix): #Convert matrices to arrays
matrixflag = True
x = np.asarray(x)
xsgn = np.sign(x)
absx = xsgn * x
mantissas, binaryExponents = np.frexp( absx )
decimalExponents = __logBase10of2 * binaryExponents
omags = np.floor(decimalExponents)
mantissas *= 10.0**(decimalExponents - omags)
if type(mantissas) is float or isinstance(mantissas, np.floating):
if mantissas < 1.0:
mantissas *= 10.0
omags -= 1.0
else: #elif np.all(np.isreal( mantissas )):
fixmsk = mantissas < 1.0,
mantissas[fixmsk] *= 10.0
omags[fixmsk] -= 1.0
result = xsgn * np.around( mantissas, decimals=sigfigs - 1 ) * 10.0**omags
if matrixflag:
result = np.matrix(result, copy=False)
np.seterr(**errhanddict)
return result
And it handles all of your cases correctly, including infinite, nan, 0.0, and a subnormal number:
>>> eglist = [ 0.0, -1.2366e22, 1.2544444e-15, 0.001222, 0.0,
... float("nan"), float("inf"), float.fromhex("0x4.23p-1028"),
... 0.5555, 1.5444, 1.72340, 1.256e-15, 10.555555 ]
>>> eglist
[0.0, -1.2366e+22, 1.2544444e-15, 0.001222, 0.0,
nan, inf, 1.438203867284623e-309,
0.5555, 1.5444, 1.7234, 1.256e-15, 10.555555]
>>> RoundToSigFigs(eglist, 3)
array([ 0.00000000e+000, -1.24000000e+022, 1.25000000e-015,
1.22000000e-003, 0.00000000e+000, nan,
inf, 1.44000000e-309, 5.56000000e-001,
1.54000000e+000, 1.72000000e+000, 1.26000000e-015,
1.06000000e+001])
>>> RoundToSigFigs(eglist, 1)
array([ 0.00000000e+000, -1.00000000e+022, 1.00000000e-015,
1.00000000e-003, 0.00000000e+000, nan,
inf, 1.00000000e-309, 6.00000000e-001,
2.00000000e+000, 2.00000000e+000, 1.00000000e-015,
1.00000000e+001])
Edit: 2016/10/12 I found an edge case that the original code handled wrong. I have placed a fuller version of the code in a GitHub repository.
Edit: 2019/03/01 Replace with recoded version.
Edit: 2020/11/19 Replace with vectorized version from Github that handles arrays. Note that preserving input data types, where possible, was also a goal of this code.