It seems you need replace
,
to empty strings
:
print (df)
2016-10-31 2,144.78
2016-07-31 2,036.62
2016-04-30 1,916.60
2016-01-31 1,809.40
2015-10-31 1,711.97
2016-01-31 6,667.22
2015-01-31 5,373.59
2014-01-31 4,071.00
2013-01-31 3,050.20
2016-09-30 -0.06
2016-06-30 -1.88
2016-03-31
2015-12-31 -0.13
2015-09-30
2015-12-31 -0.14
2014-12-31 0.07
2013-12-31 0
2012-12-31 0
Name: val, dtype: object
print (pd.to_numeric(df.str.replace(',',''), errors='coerce'))
2016-10-31 2144.78
2016-07-31 2036.62
2016-04-30 1916.60
2016-01-31 1809.40
2015-10-31 1711.97
2016-01-31 6667.22
2015-01-31 5373.59
2014-01-31 4071.00
2013-01-31 3050.20
2016-09-30 -0.06
2016-06-30 -1.88
2016-03-31 NaN
2015-12-31 -0.13
2015-09-30 NaN
2015-12-31 -0.14
2014-12-31 0.07
2013-12-31 0.00
2012-12-31 0.00
Name: val, dtype: float64
EDIT:
If use append, then is possible dtype
of first df
is float
and second object
, so need cast to str
first, because get mixed DataFrame
- e.g. first rows are type
float
and last rows are strings
:
print (pd.to_numeric(df.astype(str).str.replace(',',''), errors='coerce'))
Also is possible check types
by:
print (df.apply(type))
2016-09-30 <class 'float'>
2016-06-30 <class 'float'>
2015-12-31 <class 'float'>
2014-12-31 <class 'float'>
2014-01-31 <class 'str'>
2013-01-31 <class 'str'>
2016-09-30 <class 'str'>
2016-06-30 <class 'str'>
2016-03-31 <class 'str'>
2015-12-31 <class 'str'>
2015-09-30 <class 'str'>
2015-12-31 <class 'str'>
2014-12-31 <class 'str'>
2013-12-31 <class 'str'>
2012-12-31 <class 'str'>
Name: val, dtype: object
EDIT1:
If need apply solution for all columns of DataFrame
use apply
:
df1 = df.apply(lambda x: pd.to_numeric(x.astype(str).str.replace(',',''), errors='coerce'))
print (df1)
Revenue Other, Net
Date
2016-09-30 24.73 -0.06
2016-06-30 18.73 -1.88
2016-03-31 17.56 NaN
2015-12-31 29.14 -0.13
2015-09-30 22.67 NaN
2015-12-31 95.85 -0.14
2014-12-31 84.58 0.07
2013-12-31 58.33 0.00
2012-12-31 29.63 0.00
2016-09-30 243.91 -0.80
2016-06-30 230.77 -1.12
2016-03-31 216.58 1.32
2015-12-31 206.23 -0.05
2015-09-30 192.82 -0.34
2015-12-31 741.15 -1.37
2014-12-31 556.28 -1.90
2013-12-31 414.51 -1.48
2012-12-31 308.82 0.10
2016-10-31 2144.78 41.98
2016-07-31 2036.62 35.00
2016-04-30 1916.60 -11.66
2016-01-31 1809.40 27.09
2015-10-31 1711.97 -3.44
2016-01-31 6667.22 14.13
2015-01-31 5373.59 -18.69
2014-01-31 4071.00 -4.87
2013-01-31 3050.20 -5.70
print(df1.dtypes)
Revenue float64
Other, Net float64
dtype: object
But if need convert only some columns of DataFrame
use subset
and apply
:
cols = ['Revenue', ...]
df[cols] = df[cols].apply(lambda x: pd.to_numeric(x.astype(str)
.str.replace(',',''), errors='coerce'))
print (df)
Revenue Other, Net
Date
2016-09-30 24.73 -0.06
2016-06-30 18.73 -1.88
2016-03-31 17.56
2015-12-31 29.14 -0.13
2015-09-30 22.67
2015-12-31 95.85 -0.14
2014-12-31 84.58 0.07
2013-12-31 58.33 0
2012-12-31 29.63 0
2016-09-30 243.91 -0.8
2016-06-30 230.77 -1.12
2016-03-31 216.58 1.32
2015-12-31 206.23 -0.05
2015-09-30 192.82 -0.34
2015-12-31 741.15 -1.37
2014-12-31 556.28 -1.9
2013-12-31 414.51 -1.48
2012-12-31 308.82 0.1
2016-10-31 2144.78 41.98
2016-07-31 2036.62 35
2016-04-30 1916.60 -11.66
2016-01-31 1809.40 27.09
2015-10-31 1711.97 -3.44
2016-01-31 6667.22 14.13
2015-01-31 5373.59 -18.69
2014-01-31 4071.00 -4.87
2013-01-31 3050.20 -5.7
print(df.dtypes)
Revenue float64
Other, Net object
dtype: object
EDIT2:
Solution for your bonus problem:
df = pd.DataFrame({'A':['q','e','r'],
'B':['4','5','q'],
'C':[7,8,9.0],
'D':['1,000','3','50,000'],
'E':['5','3','6'],
'F':['w','e','r']})
print (df)
A B C D E F
0 q 4 7.0 1,000 5 w
1 e 5 8.0 3 3 e
2 r q 9.0 50,000 6 r
#first apply original solution
df1 = df.apply(lambda x: pd.to_numeric(x.astype(str).str.replace(',',''), errors='coerce'))
print (df1)
A B C D E F
0 NaN 4.0 7.0 1000 5 NaN
1 NaN 5.0 8.0 3 3 NaN
2 NaN NaN 9.0 50000 6 NaN
#mask where all columns are NaN - string columns
mask = df1.isnull().all()
print (mask)
A True
B False
C False
D False
E False
F True
dtype: bool
#replace NaN to string columns
df1.loc[:, mask] = df1.loc[:, mask].combine_first(df)
print (df1)
A B C D E F
0 q 4.0 7.0 1000 5 w
1 e 5.0 8.0 3 3 e
2 r NaN 9.0 50000 6 r