Suppose I have the following spark-dataframe:
+-----+-------+
| word| label|
+-----+-------+
| red| color|
| red| color|
| blue| color|
| blue|feeling|
|happy|feeling|
+-----+-------+
Which can be created using the following code:
sample_df = spark.createDataFrame([
('red', 'color'),
('red', 'color'),
('blue', 'color'),
('blue', 'feeling'),
('happy', 'feeling')
],
('word', 'label')
)
I can perform a groupBy()
to get the counts of each word-label pair:
sample_df = sample_df.groupBy('word', 'label').count()
#+-----+-------+-----+
#| word| label|count|
#+-----+-------+-----+
#| blue| color| 1|
#| blue|feeling| 1|
#| red| color| 2|
#|happy|feeling| 1|
#+-----+-------+-----+
And then pivot()
and sum()
to get the label counts as columns:
import pyspark.sql.functions as f
sample_df = sample_df.groupBy('word').pivot('label').agg(f.sum('count')).na.fill(0)
#+-----+-----+-------+
#| word|color|feeling|
#+-----+-----+-------+
#| red| 2| 0|
#|happy| 0| 1|
#| blue| 1| 1|
#+-----+-----+-------+
What is the best way to transform this dataframe
such that each row is divided by the total for that row?
# Desired output
+-----+-----+-------+
| word|color|feeling|
+-----+-----+-------+
| red| 1.0| 0.0|
|happy| 0.0| 1.0|
| blue| 0.5| 0.5|
+-----+-----+-------+
One way to achieve this result is to use __builtin__.sum
(NOT pyspark.sql.functions.sum
) to get the row-wise sum and then call withColumn()
for each label:
labels = ['color', 'feeling']
sample_df.withColumn('total', sum([f.col(x) for x in labels]))
.withColumn('color', f.col('color')/f.col('total'))
.withColumn('feeling', f.col('feeling')/f.col('total'))
.select('word', 'color', 'feeling')
.show()
But there has to be a better way than enumerating each of the possible columns.
More generally, my question is:
How can I apply an arbitrary transformation, that is a function of the current row, to multiple columns simultaneously?
See Question&Answers more detail:
os