Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
134 views
in Technique[技术] by (71.8m points)

python - Matplotlib adding legend based on existing color series

I plotted some data using scatter plot and specified it as such:

plt.scatter(rna.data['x'], rna.data['y'], s=size,
                    c=rna.data['colors'], edgecolors='none')

and the rna.data object is a pandas dataframe that is organized such that each row represents a data point ('x' and 'y' represents the coordinate and 'colors' is an integer between 0-5 representing the color of the point). I grouped the data points into six distinct clusters numbered 0-5, and put the cluster number at each cluster's mean coordinates.

This outputs the following graph: graph output

I was wondering how I can add a legend to this plot specifying the color and its corresponding cluster number. plt.legend() requires the style code to be in the format such as red_patch but it does not seem to take numeric values (or the numeric strings). How can I add this legend using matplotlib then? Is there a way to translate my numeric value color codes to the format that plt.legend() takes? Thanks a lot!

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

You can create the legend handles using an empty plot with the color based on the colormap and normalization of the scatter plot.

import pandas as pd
import numpy as np; np.random.seed(1)
import matplotlib.pyplot as plt

x = [np.random.normal(5,2, size=20), np.random.normal(10,1, size=20),
     np.random.normal(5,1, size=20), np.random.normal(10,1, size=20)]
y = [np.random.normal(5,1, size=20), np.random.normal(5,1, size=20),
     np.random.normal(10,2, size=20), np.random.normal(10,2, size=20)]
c = [np.ones(20)*(i+1) for i in range(4)]

df = pd.DataFrame({"x":np.array(x).flatten(), 
                   "y":np.array(y).flatten(), 
                   "colors":np.array(c).flatten()})

size=81
sc = plt.scatter(df['x'], df['y'], s=size, c=df['colors'], edgecolors='none')

lp = lambda i: plt.plot([],color=sc.cmap(sc.norm(i)), ms=np.sqrt(size), mec="none",
                        label="Feature {:g}".format(i), ls="", marker="o")[0]
handles = [lp(i) for i in np.unique(df["colors"])]
plt.legend(handles=handles)
plt.show()

Alternatively you may filter your dataframe by the values in the colors column, e.g. using groubpy, and plot one scatter plot for each feature:

import pandas as pd
import numpy as np; np.random.seed(1)
import matplotlib.pyplot as plt

x = [np.random.normal(5,2, size=20), np.random.normal(10,1, size=20),
     np.random.normal(5,1, size=20), np.random.normal(10,1, size=20)]
y = [np.random.normal(5,1, size=20), np.random.normal(5,1, size=20),
     np.random.normal(10,2, size=20), np.random.normal(10,2, size=20)]
c = [np.ones(20)*(i+1) for i in range(4)]

df = pd.DataFrame({"x":np.array(x).flatten(), 
                   "y":np.array(y).flatten(), 
                   "colors":np.array(c).flatten()})

size=81
cmap = plt.cm.viridis
norm = plt.Normalize(df['colors'].values.min(), df['colors'].values.max())

for i, dff in df.groupby("colors"):
    plt.scatter(dff['x'], dff['y'], s=size, c=cmap(norm(dff['colors'])), 
                edgecolors='none', label="Feature {:g}".format(i))

plt.legend()
plt.show()

Both methods produce the same plot:

enter image description here


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

1.4m articles

1.4m replys

5 comments

57.0k users

...