After spending a bit of time with simple UWP applications with C++/CX and ++/WinRT I have begun to enjoy some of the features of targeting that environment for Windows UI app development.
Now having to go back to a more familiar MFC application development I want to change my approach to something that is similar to UWP app development. The idea is to use asynchronous C++11 threads to generate content and modify content that is displayed in the MFC UI.
The main change I want to make is to use C++11 threads to offload some time-consuming tasks and have those threads communicate the results back to the main MFC UI.
Some of the tasks that I am looking to offload onto C++11 threads, which are similar to what I would use with asynchronous tasks with C++/CX and C++/WinRT in UWP apps are:
- connect to and exchange data with another computer
- open a data file and parse it to update the UI view
- convert a data file to another format such as CSV and export to a file
- read a file in a format such as CSV and convert the content into a data file
- perform searches and filtering of the presentation of the data file in the UI
The problem I am running into is similar to the problem described in Can I have multiple GUI threads in MFC?, however, I am looking for a general approach rather than the specific progress bar update in that question.
I have been trying a simple test with an experimental MFC app using the Visual Studio template which has a tree control docked on the left to build the tree in a worker thread.
If I have a CViewTree
, an MFC window that displays a tree view, which I want to update from a C++11 thread, I am currently using ::PostMessage()
to request that the tree control in the docked pane is updated.
If I use a lambda with a global std::thread
such as the following code:
std::thread t1;
void CClassView::FillClassView()
{
// ::SendMessage() seems to deadlock so ::PostMessage() is required.
t1 = std::thread([this]() { Sleep(5000); ::PostMessage(this->m_hWnd, WM_COMMAND, ID_NEW_FOLDER, 0); });
}
the message handler for the MFC docked pane which looks like:
void CClassView::OnNewFolder()
{
t1.join(); // this join seems to deadlock if ::SendMessage() is used.
AddItemsToPane(m_wndClassView);
}
does indeed update the MFC docked pane with the tree control content just as if the function AddItemsToPane(m_wndClassView);
were called at the same place where the C++11 thread is created. The pane update is delayed by 5 seconds when the C++11 thread is used just to provide a visible indication that the thread approach is actually working.
My problem is that I want the C++11 thread to create the content for the tree control and provide it to the docked pane rather than having the docked pane generate the content.
Thus far the only approach I can think of is to develop my own class library that will provide C++11 thread analogues to the MFC library and controls using ::PostMessage()
to send the appropriate Windows messages to the designated MFC window or control.
I am wondering if it is possible to have the C++11 threads have their own, shadowing MFC control which they update and then send a message to the UI asking the UI to update its displayed control with the contents of the shadow MFC control? Or is there some other approach that people are using?
I am looking for some other, less arduous approaches to solving this problem of updating an MFC UI from C++11 threads.
By the way #1 ::SendMessage()
appears to deadlock on the join()
in CClassView::OnNewFolder()
which I assume means that some kind of synchronization between the C+11 thread and the UI thread is blocking the C++11 thread from reaching its side of the join()
?
Yes there is a deadlock as the thread waits for SendMessage()
to return while the message handler is waiting at the join()
for the thread to finish. According to the Windows Dev Center SendMessage function:
Sends the specified message to a window or windows. The SendMessage
function calls the window procedure for the specified window and does
not return until the window procedure has processed the message.
To send a message and return immediately, use the SendMessageCallback
or SendNotifyMessage
function. To post a message to a thread's message
queue and return immediately, use the PostMessage
or PostThreadMessage
function.
By the way #2 It would also seem that using the actual Window handle rather than the this
pointer in the lambda for the C++11 thread would be safer. Just in case the this
pointer becomes undefined for some reason such as the control is removed?
By the way #3 The Microsoft concurrency
namespace, provided via #include <ppltasks.h>
, is an alternative to C++11 threads. The concurrency
namespace functions are at a higher level of abstraction than C++11 threads and are easier to use.
For instance the above use of std:thread
could be rewritten as:
void CClassView::FillClassView()
{
concurrency::create_task([this]() { Sleep(5000); ::SendMessage(this->m_hWnd, WM_COMMAND, ID_NEW_FOLDER, 0); });
}
and this does not require the use of a std::thread join()
to cleanly terminate the thread. Also SendMessage()
or PostMessage()
may be used to send the Windows message since we do not have the same deadlock issue as we have with C++11 threads.
Notes
Note #1: About Messages and Message Queues as well as Using Messages and Message Queues.
For MFC specific content see Messages and Commands in the Framework.
Note #2: Multithreading with C++ and MFC and specifically Multithreading: Programming Tips which says.
If you have a multithreaded application that creates a thread in a way
other than using a CWinThread object, you cannot access other MFC
objects from that thread. In other words, if you want to access any
MFC object from a secondary thread, you must create that thread with
one of the methods described in Multithreading: Creating
User-Interface Threads or Multithreading: Creating Worker Threads.
These methods are the only ones that allow the class library to
initialize the internal variables necessary to handle multithreaded
applications.
Note #3: UWP APIs callable from a classic desktop app which says:
With some notable exceptions, the general rule is that a Universal
Windows Platform (UWP) API can be called from a classic desktop app.
The two main areas of APIs that are an exception to this general rule
are XAML UI APIs, and APIs that require the calling app to have a
package identity. UWP apps have a well-defined app model, and they
have a package identity. Classic desktop apps do not have a
well-defined app model, and they do not have a package identity. A
classic desktop app that has been converted to a UWP app does have a
package identity.
See as well the following blogs from Sep 2012 about WinRT with VS 2012 and Windows 8. Though C++/WinRT with VS 2017 seems more appropriate for Windows 10 than Windows Runtime template Library (WRL) used:
Note #4: MFC Desktop Applications which is a jumping off point with lots of links. See also MFC COM which is a jumping off point with lots of links about MFC with COM along with this article Introduction to COM. See as well MFC Macros and Globals.
As for using AfxGetMainWnd()
to get the main application window, the Microsoft developer center has this to say in the article AfxGetMainWnd:
If AfxGetMainWnd is called from the application's primary thread, it
returns the application's main window according to the above rules. If
the function is called from a secondary thread in the application, the
function returns the main window associated with the thread that made
the call.
See Question&Answers more detail:
os