Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
327 views
in Technique[技术] by (71.8m points)

python - How to apply pos_tag_sents() to pandas dataframe efficiently

In situations where you wish to POS tag a column of text stored in a pandas dataframe with 1 sentence per row the majority of implementations on SO use the apply method

dfData['POSTags']= dfData['SourceText'].apply(
                 lamda row: [pos_tag(word_tokenize(row) for item in row])

The NLTK documentation recommends using the pos_tag_sents() for efficient tagging of more than one sentence.

Does that apply to this example and if so would the code be as simple as changing pso_tag to pos_tag_sents or does NLTK mean text sources of paragraphs

As mentioned in the comments pos_tag_sents() aims to reduce the loading of the preceptor each time but the issue is how to do this and still produce a column in a pandas dataframe?

Link to Sample Dataset 20kRows

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Input

$ cat test.csv 
ID,Task,label,Text
1,Collect Information,no response,cozily married practical athletics Mr. Brown flat
2,New Credit,no response,active married expensive soccer Mr. Chang flat
3,Collect Information,response,healthy single expensive badminton Mrs. Green flat
4,Collect Information,response,cozily married practical soccer Mr. Brown hierachical
5,Collect Information,response,cozily single practical badminton Mr. Brown flat

TL;DR

>>> from nltk import word_tokenize, pos_tag, pos_tag_sents
>>> import pandas as pd
>>> df = pd.read_csv('test.csv', sep=',')
>>> df['Text']
0    cozily married practical athletics Mr. Brown flat
1       active married expensive soccer Mr. Chang flat
2    healthy single expensive badminton Mrs. Green ...
3    cozily married practical soccer Mr. Brown hier...
4     cozily single practical badminton Mr. Brown flat
Name: Text, dtype: object
>>> texts = df['Text'].tolist()
>>> tagged_texts = pos_tag_sents(map(word_tokenize, texts))
>>> tagged_texts
[[('cozily', 'RB'), ('married', 'JJ'), ('practical', 'JJ'), ('athletics', 'NNS'), ('Mr.', 'NNP'), ('Brown', 'NNP'), ('flat', 'JJ')], [('active', 'JJ'), ('married', 'VBD'), ('expensive', 'JJ'), ('soccer', 'NN'), ('Mr.', 'NNP'), ('Chang', 'NNP'), ('flat', 'JJ')], [('healthy', 'JJ'), ('single', 'JJ'), ('expensive', 'JJ'), ('badminton', 'NN'), ('Mrs.', 'NNP'), ('Green', 'NNP'), ('flat', 'JJ')], [('cozily', 'RB'), ('married', 'JJ'), ('practical', 'JJ'), ('soccer', 'NN'), ('Mr.', 'NNP'), ('Brown', 'NNP'), ('hierachical', 'JJ')], [('cozily', 'RB'), ('single', 'JJ'), ('practical', 'JJ'), ('badminton', 'NN'), ('Mr.', 'NNP'), ('Brown', 'NNP'), ('flat', 'JJ')]]

>>> df['POS'] = tagged_texts
>>> df
   ID                 Task        label  
0   1  Collect Information  no response   
1   2           New Credit  no response   
2   3  Collect Information     response   
3   4  Collect Information     response   
4   5  Collect Information     response   

                                                Text  
0  cozily married practical athletics Mr. Brown flat   
1     active married expensive soccer Mr. Chang flat   
2  healthy single expensive badminton Mrs. Green ...   
3  cozily married practical soccer Mr. Brown hier...   
4   cozily single practical badminton Mr. Brown flat   

                                                 POS  
0  [(cozily, RB), (married, JJ), (practical, JJ),...  
1  [(active, JJ), (married, VBD), (expensive, JJ)...  
2  [(healthy, JJ), (single, JJ), (expensive, JJ),...  
3  [(cozily, RB), (married, JJ), (practical, JJ),...  
4  [(cozily, RB), (single, JJ), (practical, JJ), ... 

In Long:

First, you can extract the Text column to a list of string:

texts = df['Text'].tolist()

Then you can apply the word_tokenize function:

map(word_tokenize, texts)

Note that, @Boud's suggested is almost the same, using df.apply:

df['Text'].apply(word_tokenize)

Then you dump the tokenized text into a list of list of string:

df['Text'].apply(word_tokenize).tolist()

Then you can use pos_tag_sents:

pos_tag_sents( df['Text'].apply(word_tokenize).tolist() )

Then you add the column back to the DataFrame:

df['POS'] = pos_tag_sents( df['Text'].apply(word_tokenize).tolist() )

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...